

This project has received funding from the Euratom research and training
programme 2019-2020 under grant agreement No 945098.

Deliverable 7.7

Innovative data handling, processing,
fusion, and decision framework
technologies used for assessing
cemented waste package safety and
maintenance strategies

21.2.2024 Version 1.2 Final

Dissemination level: Public

Joonas Linnosmaa
VTT Technical Research Centre of Finland

Visiokatu 4, Tampere, Finland

email: joonas.linnosmaa@vtt.fi

Project acronym Project title Grant agreement No.

PREDIS PRE-DISposal management of radioactive waste 945098

Deliverable No. Deliverable title Version

D7.7 Innovative data handling, processing, fusion, and decision framework

technologies used for assessing cemented waste package safety and

maintenance strategies

1.2

Type Dissemination level Due date

Report Public M42

Lead beneficiary WP No.

VTT 7

Main author Reviewed by Accepted by

Joonas Linnosmaa (VTT) Ernst Niederleithinger (BAM), WP7 Lead Maria Oksa (VTT), Coordinator

Contributing authors Pages

Teemu Mätäsniemi (VTT), Tero Jokinen (VTT), Petri Kaarmila (VTT), Tuula Hakkarainen

(VTT), Enrico Botta (ANN), Tom-Robert Bryntesen (IFE), Réka Szőke (IFE)

77

Abstract

This work is a part of the European project, PREDIS, on pre-disposal treatment and management of low-

level waste and intermediate-level waste, The state of the art report (D7.1) and the gap analysis (WP2)

have identified the need for more research on adequate and industrially mature solutions (practices, data

governance, technology, and tools) for monitoring the packages and supporting decisions in the

preparation, handling, and long-term interim storage of low-level/intermediate-level cemented waste.

In the frame of task 7.5, a data management framework was set up taking into account all information gained

from read sensor data as well as processed and analysed data. These were collected and stored to enable

and develop the decision-making process for cemented waste packages in pre-disposal storages. The work

aimed to study and demonstrate data management practices, which help the end-users (waste, and data

management organizations) to increase their organizational maturity. This was done by identifying the most

relevant business processes and specifying possible technical enabler systems.

The most relevant processes identified were the measurement process, system analysis process,

information management process, and decision management process. Accompanying them, three enabler

systems were specified, developed, and demonstrated for data platforms, and decision frameworks. System

enablers were integrated into a data management framework, which manages integrated data from sensing

to decision-making. This working report focuses on reporting the development work of the data platform,

and the decision framework.

This work is strongly connected to task 7.3 “Innovative integrity testing and monitoring techniques” (reported

in D7.3) and task 7.4 “Digital twin” (reported in D7.5) which is on simulation and digital twins.

Coordinator Contact

 Maria Oksa

VTT Technical Research Centre of Finland Ltd

Kivimiehentie 3, Espoo / P.O. Box 1000, 02044 VTT, Finland

E-mail: maria.oksa.@vtt.fi

Tel: +358 50 5365 844

Notification

The use of the name of any authors or organization in advertising or publication in part of this report is only

permissible with written authorization from the VTT Technical Research Centre of Finland Ltd.

Acknowledgment

This project has received funding from the Euratom research and training programme 2019-2020 under

grant agreement No 945098.

mailto:maria.oksa.@vtt.fi

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 3/77

TABLE OF CONTENTS

LIST OF ABBREVIATIONS ... 5

1 INTRODUCTION .. 8

2 CONDITION MONITORING AND MAINTENANCE .. 12

2.1 Why condition monitoring? ..12

2.2 Condition monitoring techniques for radioactive waste ... 13

2.3 Functional specification of condition monitoring system ... 14

2.4.2 Ontology of Unit of Measure (OM) .. 18

2.4.3 Semantic Sensor Network (SSN) ...19

2.4.4 Combining PROV-O, OM, and SSN ... 20

3 DATA MANAGEMENT FRAMEWORK ... 21

3.1 High-level system description ...21

3.2 Data platform.. 23

3.2.1 Design and functionalities .. 23

3.2.2 Implementation and technology selection .. 23

3.2.3 Definition of Input Data ... 24

3.2.4 Definition of Output Data ... 29

3.2.5 Definition of Life Management Requirements ... 29

3.2.6 Databases Trade-Off Analysis ..30

3.2.7 API Specification ... 36

3.3 Data processing and integration .. 37

3.3.1 Data preprocessing .. 37

3.3.2 Automatic Azure configuration .. 40

3.4 Decision framework .. 43

3.4.1 Design and functionalities ... 43

3.4.2 Implementation and technology selection ... 43

3.4.3 Dashboards .. 44

3.4.4 OLAP Analysis ... 44

3.4.5 Dose Analysis .. 45

3.4.6 3D Analysis ...46

3.4.7 Optimization ... 48

3.4.8 Digital Twin integration .. 50

4 SUMMARY AND CONCLUSIONS ... 50

4.1 Joint showcase at UJV ... 50

4.2 Conclusion ... 52

REFERENCES .. 54

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 4/77

APPENDIX 1: DATA PLATFORM CASE STUDIES AND EXPERIENCES ... 55

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 5/77

LIST OF ABBREVIATIONS

Term Definition

3D Three-dimensional

ACID Atomicity, Consistency, Isolation and Durability

ACL Access Control List

ADC Analog to Digital Converter

AE Acoustic Emission

AI Artificial Intelligence

ALARA As Low As Reasonably Achievable

ANN Ansaldo Nucleare SpA

API Application Programming Interface

ARM Azure Resource Manager

ASR Alkali-Silica Reaction

AWS Amazon Web Services [cloud]

BASE Basic Availability, Soft state and Eventual Consistency

CCOM Common Collaborative Object Model

CI/CD Continuous Integration and Continuous Deployment

CLI Command Line Interface

CPU Central Processing Unit

CRDS Cavity Ring-Down Spectroscopy

CRIS Common Relational Information Schema

CRM Customer Relationship Management

DAU Data Acquisition Unit

DBA Database Administrator

DIC Digital Image Correlation

DLM Data Lifecycle Management

EJP European Joint Programme

ERP Enterprise Resource Planning

EU European Union

HLW High-Level [radioactive] Waste

HMI Human-Machine Interface

HTML Hypertext Markup Language

Http Hypertext Transfer Protocol

HW Hardware

I/O Input/Output

IAM Identity and Access Management

IFE Institutt for energiteknikk

ILW Intermediate-Level [radioactive] Waste

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 6/77

Term Definition

IoT Internet of Things

IT Information Technology

LLW Low-Level [radioactive] Waste

LoRa Longe Range Radio

MAC Media Access Control

MES Manufacturing Execution Systems

MIT Massachusetts Institute of Technology

MLW Medium-Level [radioactive] Waste

MQTT Message Queuing Telemetry Transport

Mu-Tom Muon Tomography

MVC Model-View-Controller

MVT Model-View-Template

NaN Not a Number

NDE Non-Destructive Evaluation

NDT Non-Destructive Testing

NoSQL Not Only SQL / Non-SQL

O&M Operations and Maintenance

OLAP Online Analytical Processing

OM Ontology of Unit of Measure

OSA-CBM Open Systems Architecture for Condition Based Maintenance

OSA-EAI Open Systems Architecture for Enterprise Application Integration

OWA Open-World Assumption

P Pressure

PaaS Platform as a Service

PROV-O Provenance Ontology

RAM Random-Access Memory

RBAC Role-Base Access Control

RDBMS Relational Database Management System

RFID Radio Frequency Identification

RH Relative Humidity

RSSI Received Signal Strength Indicator

RTOS Real Time Operating System

SOSA Sensor, Observation, Sample and Actuator [ontology]

SQL Structured Query Language

SRA Strategic Research Agenda

SSD Solid-State Drive

SSN Semantic Sensor Network [ontology]

SW Software

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 7/77

Term Definition

T Temperature

URL Uniform Resource Locator

UTF Unicode Transformation Format

VLLW Very Low-Level [radioactive] Waste

VTT Teknologian tutkimuskeskus VTT Oy

W3C World Wide Web Consortium

WP Work Package

WSGI Web Server Gateway Interface

WSN Wireless Sensor Network

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 8/77

1 Introduction

Efficient and safe management of radioactive waste is of utmost importance. By understanding the

nature of the waste, engaging with the stakeholder community, investing in research and

development, conducting risk assessments, and implementing sustainable practices, we can

achieve safe management of radioactive waste, thereby protecting both present and future

generations. Solid and liquid radioactive waste is continually generated by the nuclear industry and

institutional producers, such as healthcare and research facilities. Such waste must be appropriately

conditioned to be acceptable for storage and eventual disposal. Among the possible conditioning

processes, encapsulation of waste using an industrial cementitious grout is a method currently

implemented by many EU member states.

Medium to long-term storage, a strategy indicated in the National Programmes of many European

countries to deal with delays in available disposal solutions, necessitates the monitoring of waste

packages for potential degradation phenomena. Managing any arising issues prior to transport to

the final repositories is crucial. Innovation in degradation prevention and early detection through

advanced monitoring systems based on innovative techniques offers significant opportunities. These

advancements can lead to improved storage operations, reduced costs, increased safety, and a

better understanding of the waste's characteristics prior to final disposal. This approach aligns with

the goals of all member states, ensuring a more efficient and secure handling of radioactive waste.

Project description

The PREDIS project, titled "Predisposal Management of Radioactive Waste", builds upon earlier

work on international roadmaps and strategic research agendas. However, it strives to make

significant advances by fostering a more holistic perspective on the pre-disposal needs and priorities

for the future. The project structure was established to address four waste streams identified as

priority areas by the end-user community within the scope of the European Joint Programme (EJP)

in Radioactive Waste Management. The project's primary aim is to bring measurable benefits to the

Member States and the nuclear waste community. This includes the further development and

increase in the Technological Readiness Level of treatment and conditioning methodologies for

wastes for which no adequate or industrially mature solutions are currently available. Specific areas

of focus include metallic material (WP4), liquid organic waste (WP5), solid organic waste (WP6), and

innovations in cemented waste handling and pre-disposal storage (WP7), their rough relationships

can be seen in Figure 1. This report focuses on the work done in WP7.

Figure 1. PREDIS project structure.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 9/77

Work Package 7

The PREDIS WP7, titled “Innovations in Cemented Waste Handling and Pre-Disposal Storage”, aims

to innovate in the areas of degradation prevention and early detection using advanced monitoring

systems based on innovative techniques. WP7 offers significant opportunities for improving storage

operations, reducing costs, increasing safety, and enhancing the understanding of waste

characteristics prior to final disposal.

WP7 has the following objectives:

• Compile Information: Gather and analyse information about the state-of-the-art methods and

procedures for cemented waste management, with a specific focus on monitoring during

preparation, handling, and long-term storage.

• Quality Assurance and Monitoring: Identify, evaluate, and demonstrate store and package

quality assurance (mainly based on non-destructive methods) and monitoring technologies.

• Modelling Capability: Demonstrate the capability of geochemical and chemo-mechanical

models to describe the chemical and mineralogical evolution of packages, and to validate

their suitability for disposal.

• Digital Twin Technology: Develop, adapt, and demonstrate digital twin technology, methods

for data handling, and an overall digital decision framework.

• Increased Store Automation: Identify opportunities for increasing store automation to reduce

human exposure to radiation.

• Package Improvement: Identify options for post-treatment of packages and potential

approaches to improve package design, construction, and maintenance.

While the first three objectives have led to planning and carrying out actual demonstrations, the latter

three are limited to desk studies due to time and budget constraints. The common goal of WP7 tasks

is to develop a concept and a prototype for a condition monitoring system. More specifically this

report focuses on Task 5 of WP7.

Task 7.5

This document reports the results of Task 7.5, which had the goal to produce:

• Conceptual Model for Data Handling and Storage: Provide a conceptual model for secure

and persistent data handling and storage. This includes both measured data (Task 3) and

simulated data (Task 4).

• Translation of NDE and Monitoring Data: Develop models and methods to translate Non-

Destructive Evaluation (NDE) and monitoring data into engineering parameters.

• Fusion of Multi-Method Monitoring: Develop approaches for the fusion of multi-method

monitoring and other data. This will enable obtaining adequate input for the decision

framework.

• Data Integrity Plan: Implement a plan to ensure the integrity of the data throughout the

project's lifecycle.

• Database and Software Prototype: Provide a database and software prototype for

demonstration purposes. This will serve as a tangible example of the project's capabilities

and potential applications.

The task collectively contributes also to the overarching goal of innovating in the areas of degradation

prevention, early detection, and efficient handling of cemented waste. Figure 2 presents the

relationship of Task 7.5 to Task 7.3 (Innovative integrity testing and monitoring techniques) and Task

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 10/77

7.4 (Digital Twin). Also, the subtasks of Task 7.5 and their focus areas are visualized. Within the task

we are calling this concept data management framework.

Figure 2. Scope of Task 7.5: Data handling, processing, and fusion.

Sub-tasks 7.5.1, 7.5.2 and 7.5.3

Task 7.5 was further divided into three subtasks:

• The first Subtask 7.5.1 involves developing a platform with the goal of fostering seamless

connections between devices and sensors from various manufacturers, including those used

in the monitoring system. A configurable Human Machine Interface (HMI) was planned to be

implemented into the platform, providing real-time status of field sensors, time trends, alarm

thresholds, and more, with possible access to third parties such as safety authorities and fire

brigades. A "dashboard concept" will be developed for the platform, enabling visualisation of

model predictions of event evolution to be assessed alongside real-time sensor

measurements. Additionally, a reference database will be planned and conceptualized,

possibly containing waste-condition information from various stages throughout the waste

lifecycle, for example acceptance, conditioning, and pre-disposal storage.

• The second Subtask 7.5.2 was planned to focus on implementing more general data

processing techniques. However, because of the challenges of producing measurement

dataset from the project, and the need for further planning in the final implementation, this

task focuses more on the selected general approach implementing activities such as

communication, system integration and the administration of the various platforms used for

the development work, such as Microsoft Azure and InfluxDB.

• The third Subtask 7.5.3 focuses on the decision-support framework. This framework will

utilize the available data, computed results, predictions from the digital twin, and expert

knowledge, converting this information into end-user digestible visualization,

recommendations, and (semi-)automated decisions for the end user. A prototype decision

support platform will be implemented to integrate data from monitoring with the scheduling of

preventive maintenance actions, optimizing maintenance strategies, and safety

assessments. Strategies will also be developed for optimizing package arrays about store

requirements using the digital decision framework.

Together, these sub-tasks form a comprehensive approach to handling, processing, and utilizing

data in the context of cemented waste management, leveraging modern technologies and

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 11/77

methodologies to enhance efficiency, safety, and decision-making, thus building a concept for a

common data management framework.

Connections to other PREDIS tasks

The interrelations of the tasks create information dependencies and technological harmonization and

integration requirements for the Task 7.5 as presented in Figure 3. The data synthesis and

technology integrations cover both raw data and meta data.

Figure 3. Information dependencies and integration requirements.

As shown in Figure 3, task 7.5 is strictly connected with other WP7 tasks. In the following we give

some context and reasons for these links:

• It receives input information and guidance from Task 7.2, devoted to:

o Compile a state-of-the-art report concerning the packaging, storage, and monitoring
strategies for cemented waste packages in Europe

o Identify a reference container/package type and a list of reference package evolution
and degradation scenarios to be used

o Provide necessary data for the strategic environmental and impact assessments

• It receives data (measured and numerical) from Task 7.3, devoted to
o Select relevant conventional and innovative NDE/monitoring techniques and adapt

them for use under typical storage conditions, for implementation into individual waste
packages, for wireless data transmission and for wireless energy supply

o Develop an instrumentation setup for use in Task 6 that incorporates a combination
of techniques, including both sensors embedded in individual waste packages and
measurement systems integrated into the repository

o Test the relevant technologies at UJV using full-size package mock-ups that
incorporate real cementation technology

• It provides methods for demonstration in Task 7.6, devoted to:
o Demonstrate that the technologies, methods, and models developed and identified in

Tasks 7.2 to 7.5 can be used in a nuclear environment
o Test and verify the performance of the selected technologies, developed prototypes,

and models by the deployment of an instrumented package at an end-user facility,
possibly within a store environment

o It receives information on treatment and other mitigation options from Task 7.6.

• Interfacing with Task 7.4 focusing on digital twin model, it is also required to allow access to

a selected dataset and return data for predictions.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 12/77

o Task 7.4 provides simulated data of waste form evolution for Task 7.3 and supports

sub-task 7.5.3 with data and expertise needed for the decision-making framework.

o It provides requirements for the data repository.

2 Condition monitoring and maintenance

2.1 Why condition monitoring?

Condition monitoring systems are essential tools in modern industrial operations, providing real-time

insights into the performance, health, and efficiency of machinery, equipment, and processes. These

systems play a vital role in predictive maintenance, safety, and optimization, allowing organizations

to make informed decisions based on accurate and timely data.

What is Condition Monitoring? Condition monitoring refers to the continuous or periodic observation

and analysis of the operating parameters of a system. It involves the use of various sensors,

instruments, and software to collect, process, and interpret data related to temperature, vibration,

pressure, humidity, and other physical properties. The goal is to detect any changes or anomalies

that may indicate potential problems, wear, or failure (Rao, B. K. N., 1996).

Why is Condition Monitoring Important?

• Predictive Maintenance: By identifying early signs of wear or malfunction, condition

monitoring enables timely maintenance and repairs, preventing unexpected breakdowns and

minimizing downtime.

• Safety: Monitoring the condition of equipment and processes helps ensure that they are

operating within safe parameters, reducing the risk of accidents and hazards.

• Efficiency: Through continuous analysis of performance data, condition monitoring can

identify areas for optimization, leading to energy savings and increased productivity.

• Cost Savings: By enabling proactive maintenance and reducing the need for emergency

repairs, condition monitoring can significantly reduce overall maintenance costs.

• Compliance: In regulated industries, condition monitoring helps ensure that equipment and

processes comply with legal and environmental standards. (Randall, R. B., 2011)

Key Components of Condition Monitoring Systems:

• Sensors: Various types of sensors are used to measure physical properties such as

temperature, vibration, pressure, etc.

• Data Acquisition: Devices and software that collect and transmit data from the sensors to a

central system.

• Data Analysis: Software tools that analyse the collected data, applying algorithms and

statistical methods to detect patterns and anomalies.

• Human-Machine Interface (HMI): A user-friendly interface that allows operators to view and

interact with the data, often including visualizations, alarms, and reports.

• Integration with Other Systems: Many condition monitoring systems can be integrated with

other enterprise systems, such as Enterprise Resource Planning (ERP) or Manufacturing

Execution Systems (MES), for holistic management. (Jardine et al., 2006)

Condition monitoring systems are a cornerstone of modern industrial practice, providing essential

insights into the health and performance of machinery and processes. Whether in the context of

cemented waste management, manufacturing, energy production, or other sectors, these systems

enable organizations to operate more safely, efficiently, and cost-effectively. By leveraging advanced

sensors, data analytics, and integration capabilities, condition monitoring paves the way for

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 13/77

intelligent decision-making and proactive management in today's complex industrial landscape.

(Mohanty, 2015).

2.2 Condition monitoring techniques for radioactive waste

In cemented Radioactive waste, the essential parameters to be monitored according to the survey

reported (PREDIS Deliverable 7.1, 2021-04-14 version 1.1):

• Identification: Determine the identifiers for the barrels of radioactive waste

• Metal corrosion

• Chemical reactions

• Leakage

• Lifting feature deformation

• Swelling

• Cracks

• Condensation

• Contamination of waste barrels

• Fissile content

Condition monitoring techniques for cemented radioactive waste that can be used in this project

have been reported (PREDIS Work Package 7 Milestone MS53 – M7.5 – Month 36 Internal Report):

• Long Range Radio (LoRa) communication technology: The use of LoRa nodes allows to

assign unique identifiers to barrels of radioactive waste and at the same time periodically

collect their radiation data. LoRa gateways control data traffic and forward data to cloud

services and thus enable remote access to data.

• Acoustic emission (AE) monitors acoustic emissions or high-frequency signals and can be

used for non-destructive monitoring of possible cracking of concrete. E.g., Alkali-silica

reaction (ASR) and the subsequent swelling of the gel-like product can cause cracking in

concrete.

• The non-contact air-coupled ultrasonic sensors can be used to provide for drums inspections

such as measuring circumferences to detect drum swelling and discontinuity defects such as

cracks or corrosion cavities.

• Muon Tomography technique (Mu-Tom) enable a non-destructive approach to investigate

the internal unknown composition of cemented drums.

• Neutron and gamma monitoring system with smart electronics

• Customized RFID for embedded sensors inside waste drums

Similar techniques have been used in other applications domains. The following is a list of the most

typical condition monitoring techniques that are used to assess the condition of machines, devices,

or systems, which can be helpful for the monitoring of radioactive waste too:

• Thermography: Infrared cameras are used to monitor the temperature variations of devices

and thus detect, for example, overheating of components.

• Ultrasound Testing: Monitoring high-frequency sound waves to identify problems such as

leaks, electrical faults or bearing problems.

• Visual Inspection: Identifying visually signs of wear, leaks or corrosion of components.

• Acoustic Emission Testing: Monitoring acoustic emissions or high-frequency signals and

detecting material degradation or structural defects in components.

• Performance monitoring: Monitoring the performance parameters of machines and systems

and detecting possible deviations from the expected operating behaviour.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 14/77

• Remote monitoring and IoT: Enables remote monitoring and analysis of the condition of

machines from a centralized location by utilizing sensors, IoT devices and connections to

collect real-time information from the devices.

These techniques can be combined for different uses and requirements. Condition monitoring

enables maintenance strategies, e.g., condition-based maintenance and predictive maintenance.

Some condition monitoring techniques have their own standards, for example:

- ISO 13373-1 Condition monitoring and diagnostics of machines — Vibration condition

monitoring — Part 1: General procedures

- ISO 13373-2 Condition monitoring and diagnostics of machines — Vibration condition

monitoring — Part 2: Processing, analysis and presentation of vibration data

- ISO 14830-1:2019 Condition monitoring and diagnostics of machine systems — Tribology-

based monitoring and diagnostics — Part 1: General requirements and guideline

- ISO 18434-1 Condition monitoring and diagnostics of machines — Thermography — Part 1:

General procedures

- ISO 17359:2019 Condition monitoring and diagnostics of machines — General guidelines

2.3 Functional specification of condition monitoring system

This section introduces general and possible functionalities for a machine condition monitoring, but

the ideas are also adaptable for the architecture of novel condition monitoring system in cemented

waste management. The generic descriptions of the functionalities are presented here, but later, in

Chapter 3.1, they are allocated to the different subsystems of the data management framework.

ISO 13374-1 (2003) establishes general guidelines for software specifications to allow machine

condition monitoring data and information to be processed, communicated, and displayed without

platform-specific or hardware-specific protocols. This kind of architecture should operate in plug-

and-play fashion and support pro-active operation, maintenance and discovering root causes and

severities of possible faults. Information flows from data acquisition to advisory generation are in the

scope. The guideline introduces six distinct and layered data-processing blocks for which more

detailed requirements are stated in ISO 13374-2 (2008). A software module implementation may

include functionality of one or several data-processing blocks. The blocks are introduced as follows.

The data acquisition block is for identification of measurement locations, sensor configurations,

signal to parameter conversions and configuring plant/asset/part hierarchies. The block may read

data from sensors or get a manual or automatic feed to collect, digitalize and consolidate data to

records into a repository.

The data manipulation block is for signal analysis and virtual sensor descriptors. The block can

convert raw data to meaningful features which characterize the feature of interest. Typical processing

algorithms are filtering, windowing, averaging, normalizing and time-frequency transformations.

The state detection block is defined for baseline profiles, limit values, abnormality search or

baseline comparison and anomaly detection. The block generates state indicators with degree of

abnormality. Also, statistical measures such as Weibull and Gaussian distributions may be

generated. All generated assessments must be based on operational context and are sensitive to

the current operational state.

The health assessment block generates alerts and alarms, includes diagnostic analyses for faults,

possible failures with probabilities and estimates machine health index based on human or agent

expertise. In addition, evidence and explanation information may be included in reporting and

visualizations.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 15/77

The prognostic assessment block predicts the expected life of the machine or fault conditions by

determining future health states and failure modes based on the current situation and projected

usage loads. The future usage load may be forecasted with operational models or historical data.

Lastly, the advisory generation block supports the optimization of the life of the equipment and

recommends alternative actions for future operation, maintenance, or strategic activities. Also,

capability forecast assessment or operational profile modification is of interest. The advisory

generation block as a decision support module considers constraints such as the operational usage

and maintenance history, current and future mission profiles, high-level objectives, and other

resource constraints.

In addition, this software specification is based on a three-layer architecture by separating data

archiving, processing logic, and information presentation layers.

MIMOSA™ is a not-for-profit industry trade association that develops and encourages the adoption

of open, supplier-neutral standards enabling physical asset lifecycle management (MIMOSA, 2022).

It has published the Open Systems Architecture for Enterprise Application Integration (OSA-EAI™)

specification compliant with ISO 13374 information architecture requirements and the Open Systems

Architecture for Condition Based Maintenance (OSA-CBM™) specification compliant with condition

monitoring and diagnostic processing architecture requirements. The current OSA-EAI release

specifies the Common Collaborative Object Model (CCOM) for condition monitoring information and

is defined as unbiased toward any single application and independent from physical storage or

access methods. Also, past OSA-EAI releases defined the Common Relational Information Schema

(CRIS) for OSA-EAI relational data store.

The information content is mentioned useful to operators, maintenance engineers, reliability analysts

and management persons. Mathew et al., 2006, analyses MIMOSA OSA-EAI CRIS data model in

detail from a system development and data modelling perspectives for a condition monitoring system

implementation. They see integral issues in insufficient documentation on the specification and in

database design choices that must be followed to retain a consistent data model. In addition, they

present simplifications and additions to the data model such as removing unwanted tables and

columns or linking new information for asset symptoms according to desired functions of the system

under development. Also, benefits of CRIS data model normalization or denormalization are

discussed.

2.4 Ontologies for information modelling

For information modelling in the cemented waste management, attractive ontologies are introduced

in this section. Existing ontologies have been defined for a variety of different purposes. They can

improve the utilization, management, and analysis of health monitoring data. Furthermore, by

combining existing ontologies (ontology merging), a suitable composition can be formed for special

requirements.

Ontologies are based on open-world-assumption (OWA). So, their nature is rather descriptive than

restrictive in the information modelling. For the novel condition monitoring in the cemented waste

management, ontologies can define a common terminology and demonstrate its use. Devices and

different health monitoring data sources may use different terms and concepts. In this case, uniform

concepts and terminology can be defined to facilitate data understanding and comparison. In

addition, an ontology can be used to create a unifying framework that helps integrate different data

sources. In this case, a more comprehensive picture of the state of the system is obtained.

Ontologies help also to present the provenance of condition monitoring data, i.e., its origin and

history. This is useful when investigating failure situations or performance degradation and their

causes. In addition, ontologies enable semantic search capability. This makes it easier to make more

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 16/77

complex queries and search for more accurate data. Ontologies facilitate information sharing

between different systems. With their uniform structure, data exchange and interoperability with

different condition monitoring systems are easier to implement. In summary, ontologies may make it

easier to implement a base for automatic decision-making and intelligent systems.

2.4.1.1 Provenance ontology (PROV-O)

PROV-O (PROV-O: The PROV Ontology, 2013) is a specification developed by the World Wide Web

Consortium (W3C) that defines different concepts and the connections between them for presenting

and sharing provenance information in a standardized way. Provenance information is information

about the origin, management, ownership or history of a certain entity. The key concepts of the

PROV-O ontology are Entities, Activities, Agents and their relations. Individuals and properties

describe how entities are created, used, and how different operations and agents affect them over

time. All in all, the PROV-O ontology is useful in information management and information systems

where monitoring and understanding the history of data and its processing are important. Main

classes and relationships are described in the Figure 4.

Figure 4. Classes of PROV-O.

2.4.1.2 PROV-O in condition monitoring

Here we describe the application of PROV-O in condition monitoring. Provenance information means

when the data was created, which sensor or device collected the data, how the data was

transformed, how the data was processed. PROV-O’s Entity class refers to the object's components

and sensor measurements, from which a unified description of the entities of the condition monitoring

system is compiled. PROV-O's Activities describe operations that have an impact on the object's

state or health monitoring data. Such are, for example, maintenance operations, cleanings,

calibrations, which can be done by an agent. Agents are typically maintenance personnel or

automation systems. The relations between individuals of Entities, Activities and Agents describe

which function produced an individual of Entity, and by which Agent individual. PROV-O also enables

data versioning and its derivation in situations where a data set has been derived from another data

set with the help of some data processing. In addition, it enables environmental information to be

described. Environmental information means the environmental conditions, such as temperature and

humidity, that prevail in the storage.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 17/77

Here we describe a brief example of a possible application of the PROV-O ontology in the context

of the PREDIS project. Figure 5 describes the classes and the relationships between them. Here,

the class symbols are the same as in Figure 4. Entities include MeasurementData, Feature, State,

HealthIndex, Prognosis, and Recommendations. Activities include DataAcquisition,

DataManipulation, StateDetection, HealthAssessment, PrognosticAssessment, and

AdvisoryGeneration. Agents are a sensor and a digital twin.

Figure 5. PROV-O example.

Reading Figure 5 from top to bottom, the Sensor Agent performs the DataAcquisition Activity, as a

result of which the Entity MeasurementData is created. A time has been defined for this execution:

startedAtTime and endedAtTime. In the next step, the DigitalTwin Agent performs the Activity

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 18/77

DataManipulation, which uses the MeasurementData entity. A Feature Entity is created as a result

of the DataManipulation activity.

A basically similar structure is repeated downwards in the picture. The Agent executes an Activity

that uses the Entity from the previous step. A start time and an end time have been defined for each

Activity, which, however, have been left out of the picture for clarity. As a result of the activity, a new

Entity is created. Relationships arise between entities created in this way, where the latter Entity is

derived from the former. Thus, the provenance information and the entire history of the Entities will

be described.

2.4.2 Ontology of Unit of Measure (OM)

OM (OM – Ontology of units of Measure, 2017) is an ontology that provides concepts and

relationships between them for describing quantitative scientific information (e.g., units, amounts,

dimensions). The purpose of this ontology is to facilitate consistent and interoperable description of

quantitative data in different applications. The following concepts are central to OM:

- Unit

- Quantity

- System of Units

- Measure

- Scale

- Point

- Dimension

Here we describe a brief example of the use of the OM ontology in the context of the PREDIS project.

Condition monitoring involves many different measurements of physical properties and phenomena,

the exact definition of which is important. The example is narrow, as it contains only one

measurement unit and its related classes and their instances. The ontology is described in Figure 6.

Classes are depicted with rounded rectangles and their instances are depicted with sharp rectangles.

Colour coding describes namespaces: OM is orange, PREDIS namespace pre is blue.

Figure 6. OM example.

The WastePackage class and its instance are on the left. WastePackage is associated with the

phenomenon of surface contamination, which we want to measure.

AlfaBetaActivityOfWastePackage is an instance of the rather broad class Quantity. The instance has

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 19/77

a measured value (hasValue relation), which is an instance of the Measure class. The instance has

a numerical value and its unit of measure. The numerical value is 0.4. The unit of measure is defined

in the UnitOfMeasure class of OM.

2.4.3 Semantic Sensor Network (SSN)

The Semantic Sensor Network (SSN) ontology is an ontology developed by the World Wide Web

Consortium (W3C) that describes sensors, observations and related concepts. The SSN ontology is

to improve interoperability and facilitate the integration of sensor data in different applications.

In SSN and SOSA, the most central concepts are listed (Semantic Sensor Network Ontology, 2017):

- Sensor: “Device, agent (including humans), or software (simulation) involved in, or

implementing, a Procedure.”

- Observation: “Act of carrying out a Procedure to estimate or calculate a value of a property

of a FeatureOfInterest”

- Feature of Interest: “The thing whose property is being estimated or calculated in the course

of an Observation to arrive at a Result”

- Procedure: “A workflow, protocol, plan, algorithm, or computational method specifying how

to make an Observation, create a Sample, or make a change to the state of the world (via an

Actuator)”

- Sample: “Feature which is intended to be representative of a FeatureOfInterest on which

Observations may be made”

- Sampling: “An act of Sampling carries out a (Sampling) Procedure to create or transform one

or more”

- Platform: “is an entity that hosts other entities, particularly Sensors, Actuators, Samplers, and

other Platforms”

- Property: “A quality of an entity”

- Actuator “A device that is used by, or implements, an (Actuation) Procedure that changes the

state of the world”

- Actuation “An Actuation carries out an (Actuation) Procedure to change the state of the world

using an Actuator”

A sensor refers to a device or system used to measure phenomena in the physical world.

Observation refers to a process that measures a phenomenon or characteristic with the help of a

sensor. Feature of Interest is the thing whose properties that the sensor is supposed to measure.

Observation Procedure refers to the method or procedure required to make an Observation. Platform

refers to the object to which the Sensor is connected. Property describes the measured property of

the Feature of Interest.

The SSN ontology is a standardized way of presenting and linking information related to sensors,

which facilitates the sharing and integration of data from different sensors and platforms.

Here we describe a brief example of the use of the SSN and SOSA ontologies in the context of the

PREDIS project. The example is narrow and covers only a small part of the potential of the SSN and

SOSA ontologies. The ontology is described in Figure 7. Classes are again depicted with rounded

rectangles and instances with sharp rectangles. The namespaces are separated by colour coding.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 20/77

Figure 7. SSN and SOSA example.

The FeatureOfInterest class and its instance wastePackage are at the bottom center of the image.

So the WastePackage instance is the thing whose measurable properties we are interested in. The

instance has a relation to surfaceContamination, which is an instance of the ObservableProperties

class. These describe exactly the phenomenon being measured. The Sensor class and its instance

radioMeter are on the left. The radiometer has a observes relation with the observed phenomenon,

i.e., surfaceContamination. The sensor makes observations. This activity is described by the class

Observation and its instance radiationObservation. An observation has some result that contains a

numerical value and its unit of measurement. These are described by SOSA's Result class and its

instance.

2.4.4 Combining PROV-O, OM, and SSN

By combining different ontologies, a more comprehensive representation of the terms and concepts

of the target area can be compiled. Combining the ontologies of Units of Measure (OM), PROV-O

(Provenance Ontology), and Semantic Sensor Network (SSN) provides a more comprehensive

representation of condition monitoring data, including units of measure, provenance information, and

sensor-related information.

Here we describe a simple example of how the aforementioned ontologies (i.e., PROV-O, OM, and

SSN) can be combined in the context of the PREDIS project. Classes are again depicted with

rounded rectangles and instances with sharp-edged rectangles. The example is closely based on

the OM and SSN ontology examples mentioned above. The PROV-O example is now formatted

differently than above. The example ontology is described in Figure 8.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 21/77

Figure 8. Example of ontology merging.

The ontologies SSN and PROV-O are aligned in such a way that many classes of the SOSA and

SSN ontologies are subclasses of the PROV-O ontology. These relationships are modelled using

the isSubClass relationship. For example, the Sensor class of the SOSA ontology is a subclass of

the Agent class of the PROV-O ontology. In this way, the radiometer is an instance of both the SOSA

Sensor class and the PROV-O Agent class. Thus, the relations of these classes can be applied to

the instances. Otherwise, the interpretation of the diagram takes place in the same way as in the

examples mentioned above, where individual ontologies were described.

3 Data management framework

3.1 High-level system description

System life cycle processes in systems and software engineering (ISO/IEC/IEEE 15288, 2015) serve

as our process reference model and provide a process framework to identify processes under study.

The PREDIS project identifies that measurement, system analysis, information management and

decision-making processes are the most relevant ones (Figure 9). Figure 9 also maps processes

(black-coloured text next to orange-coloured boxes) and systems (orange-coloured boxes) together

and identifies the main information flows between the systems (grey-coloured boxes). The flow of

information starts from the waste package (where the interesting monitored physical phenomena are

happening), which the sensing and monitoring system tries to measure and, on the other hand, the

digital twin tries to model for predictions. Both datasets are gathered in the data platform, which acts

as the central repository for processing, storing, and transferring data between other enabler

systems. The decision framework provides the measured and predicted information visually to the

end user, helping them in the decision management process.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 22/77

Figure 9. Data management framework high-level system architecture.

On a high-level, the generic condition monitoring system functionality blocks are described in
Chapter 2.3. Here they are allocated into the four data management framework subsystems, which
are interacting with each other as shown in Figure 9. The four subsystems are briefly described here,
before they are further described in the following chapters.

• Sensing and monitoring system handing the measurement process: the development of
this subsystem is generally out of the scope of this task; it has been the focus of Task 7.3
within PREDIS project. However, there has been close communication between the partners
of these tasks, as the measurement are the input for the data management platform of Task
7.5. All latter systems have been fitted to manage the data coming from the measurement
process. There exists PREDIS project reports and deliverables describing this subsystem in
more detail. This subsystem is fulfilling the functionalities of the data acquisition block and
the data manipulation block from Chapter 2.3

• Data platform handling the information management process: this subsystem is the central
data repository of the data management framework, interfacing with the various data input
and output flows as shown in the Figure 9. This subsystem is further explained in Chapter
3.2. This subsystem is fulfilling the functionalities of the state detection block and the data
manipulation block from Chapter 2.3.

• Digital twin handling the system analysis process: the development of this subsystem is
generally out of the scope of this task; it has been the focus of Task 7.4 within PREDIS
project. It aims at condition prediction and the description of the evolution of the waste form.
However, the linking of these two tasks has been discussed during the project, and general
principles how these tasks are supporting each other are clear. There exists PREDIS project
reports and deliverables describing this subsystem in more detail. This subsystem is fulfilling
the functionalities of the prognostic assessment block and the health assessment block from
Chapter 2.3.

• Decision framework handling the decision management process: this subsystem is the user
interface to the data management framework and aims to assist the decisions makers in
various ways with information about the condition of the monitored packages and
complementing that information with the prediction capabilities of the digital twin subsystem.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 23/77

This part is further described in Chapter 3.4. This subsystem is fulfilling the functionalities of
the advisory generation block and the health assessment block from Chapter 2.3.

Early in the project a decision was made to use Microsoft Azure, a popular cloud computing platform,
as the common platform for concepting and developing the system prototype. A platform with access
from all project partners was needed, and Azure offers several key features and advantages, for
example: scalability and flexibility, IoT integration, security and compliance, global reach and
availability, and good developer tools and ecosystem. As a main developer environment, a virtual
machine within the Azure platform was established, including the needed database selections done
in Chapter 3.2, also the Azure data lake was used to store data.

The following chapters further describe each of the system elements in the focus of Task 7.5.

3.2 Data platform

This chapter reports the work done in PREDIS Subtask 7.5.1 by partner ANN, which focused on the

development of the data platform part of the data management framework.

3.2.1 Design and functionalities

The activity to be performed can be organized into three main tasks with different objectives:

1. Develop a platform that will foster the seamless connection between devices and sensors
from different manufacturers, including those used in the monitoring system.

2. Implement a configurable Human Machine Interface (HMI) into the platform, which provides
the real-time status of field sensors, time trends, alarm thresholds, etc., and is safely
accessible to third parties (i.e., safety authorities, fire brigades, etc.)

3. Develop a “dashboard concept” for the platform that enables model prediction of event
evolution (i.e., concrete waste package evolution and/or deposit) to be assessed alongside
real-time sensor measurements

4. Develop a reference database for the platform containing waste-condition information from
various stages throughout the waste lifecycle, starting at the acceptance of the (often
unconditioned) waste and including the impact of the conditioning (i.e., cementation) and the
evolution of the waste during pre-disposal storage

The design activities have been involving different organizations as contributors.

3.2.2 Implementation and technology selection

As in any project, the data-management project requires the collection of input data and
requirements, in particular:

a. Definition of data to be managed as input and output

b. Definition of data life management requirements

c. Database availability and evolving technologies

d. API Specification.

Based on above, case studies can be set-up to highlight advantages and disadvantages of any
potential design choice.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 24/77

3.2.3 Definition of Input Data

Preliminary definition of possible input data is required to assess properly the data management

process.

In Subtask 7.5.1, it can be assessed that the essential input data set to manage is:

A. Organization which is originating the data to be managed (PREDIS, other EU projects, End

User).

B. Format of data to be managed («raw», «formatted» and metadata), in particular:

1. «raw»= typical images and/or large quantities of data acquired in a short time

2. «formatted»= data acquired from continuous measures to be transferred in a declared

format

3. metadata = data almost immutable in the time characterizing:

1. The waste package from its generation to its final allocation

2. The sensors and/or associated Data Acquisition Units (DAU)

3. The correlations between the sensor DAU and the waste package

4. The change of working conditions of measuring device.

C. Data Flow Criteria:

1. Hardware to be interfaced for data acquisition should not represent a specific constrain since

it is always possible to adopt a dedicated gateway

2. Frequency of data acquisition can range from 100 Hz for few seconds to once a

day/week/months for long time.

3. Data properties have to be fixed as formats so that it is not required to edit the file in the same

application that was used to generate it. In this class are included: structured CSV, JSON,

PNG, JPG, TIFF, PDF

4. Data shall be acquired and archived so that queries are user-friendly.

3.2.3.1 Metadata Definition

A reference nomenclature for the metadata has to be defined in agreement also with the schemes

presented in other WPs (i.e., 7.3, see https://github.com/predis-h2020/metadata)

The current proposal is to define four main “Classes”:

1. The class “WastePackage”

2. The class “Sensors”

3. The class “Images”

4. The class “Nodes”

Each class can be sub-divided in different sub-classes.

The “Waste Package” Class is formed by three second level classes, by considering also End user

indications (see ref (7)):

“Basic Unit” subclass:

1. ID

2. Waste Type (VLLW, LLW, ILW, MLW, HLW)

3. Waste Original Inventory

4. Waste Treatment (i.e., grouting)

5. Shape (i.e., Drum, Barrel)

6. Dimensions (Inner, Outer)

7. Volume

8. Concrete Filling Grade (only if grouted)

9. Alpha/Beta Surface Contamination (Bq/cm2)

10. External Dose Rate (mSv/h)

https://github.com/predis-h2020/metadata

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 25/77

11. Waste Inventory (vector ID)

12. Total Gamma Activity (Bq)

13. Gamma spectra (link)

14. Place of Origin

15. Date of production

16. Date of characterization

17. Arrival Date

18. Loading Date

19. Picture Link

20. Drawing Link

21. Presence of sensors inside (ID list)

22. Presence of sensors outside permanent attached (ID list)

23. Presence of DAU (list)

24. Coordinates of sensors inside (if any)

25. Coordinates of sensors outside (if any)

26. Coordinates of DAU (if any)

“Pallet” subclass: a set of Drums/Barrels placed on a pallet (1, 2, 4 or 6 drums)

1. Pallet ID

2. Pallet Size

3. Basic Units IDs

4. Place of final assessment

5. Presence of DAU (list)

6. Coordinates of DAU (if any)

“Waste Package” Subclass:

7. Type: a Basic Unit or a Pallet

8. Storage Tag

9. Storage coordinates (cartesian x,y,z or vault coordinates)

10. Movement history tracking (site list)

11. Date of loading in the vault

12. Date of last check

13. Date of planned next check

14. Array: set of waste packages in a specified direction (usually z)

The “Sensors” Class is characterized by one subclass:

“Sensor” subclass:

1. Sensor ID

2. Sensor Type

3. Position (inside or outside basic unit, environmental)

4. Last calibration date

5. Calibration certificate number

6. Calibration factor

7. Product name /sensor manufacturer

8. Total number of measurement type (maximum 2: P&T, RH&T, P&RH, Gamma&Neutron)

9. For each measure: measurement type, unit of measurement value, min –max value

10. Spatial location (referred to the basic unit or to the Pallet or Vault)

11. Origin Vector (default Z axis parallel to drum axis, origin on the drum bottom)

The “Nodes” Class is characterized by two subclasses:

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 26/77

“Sensor Node” (or Data Acquisition Unit) subclass

1. Product ID

2. Product Type

3. Manufacturer

4. HW Serial Number

5. SW Firmware version

6. Location

7. Part Number

8. Last Inspection date

9. Connected Sensors List

10. Total channels available (maximum 12)

11. For each channel

1. Channel ID

2. Connected Sensor ID

3. Associated Measures

4. Measurement Unit

12. Working status (“available”/”out of service”)

“Gateway” subclass.

1. Product ID

2. Serial Number

3. MAC address

4. Connected “Sensor Nodes/DAU” list

5. Working status (available /”out of service”)

6. Communication protocol

The class “Images” is characterized by the hyperlink to any information to be stored as raw data in

graphical form by including pictures, drawings, calibration certificates, radwaste characterization

reports, etc.

3.2.3.2 Default data format and access options

The formatted data can be considered sources for “Time Series” data acquisition and handling. The

current main data to manage in this project are provided from Task 7.3.

• BAM:

o Concrete embedded RFID Sensors: RFID sensor placed inside the waste drum to

monitor moisture and temperature.

• UNIPI/CAEN:

o External Dose Rate Sensors: gamma & neutron plus RFID techniques

• INFN:

o Gamma dose rate field associated to each drum monitored by using optical fibres put

outside the drum

The data flow is coming at a fixed frequency with an associated timestamp.

3.2.3.3 Dummy data options

Data management in management nuclear radwaste (see Data management in

https://doi.org/10.1016/j.pnucene.2022.104251) requires to enable consistent accessibility, delivery,

governance, and security of data to meet an organization’s requirements using tools including master

data management, data virtualization, data catalogue, and self-service data preparation and

wrangling.

https://doi.org/10.1016/j.pnucene.2022.104251

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 27/77

A data management program implementation should be set-up using the following characteristics:

Established data governance controls that provide security by limiting access to data only to

authorized users, making it easy to identify the data you're looking for with clear metadata. Easily

accessible data, including streaming, transactional, structured, and unstructured data. An

infrastructure that can evolve as business needs change. The ability to work with existing and legacy

technologies without having to go through the expensive task of "ripping and replacing." Consistent

and controlled data sharing across business domains, allowing for data use in operations, analytics,

and governance. Data quality that measures up in these five key areas:

1. Validity: The data conforms to the syntax (range, format, type) of its definition.

2. Consistency: When comparing two or more representations of an object or event, there are

no differences.

3. Uniqueness: No copied data records.

4. Accuracy: The data can correctly describe the "real-world" object or event in question.

Completeness: All relevant data is included.

5. Timeliness: The data is up to date and represents reality from a very recent point in time.

The data management program can be addressed at different technologies:

1. Build Data Warehouse Structure

2. Use Analytical Database

3. Automate with Orchestration Tools

4. Monitor System with Alert Notifications

3.2.3.4 Communication sensor testing parameters

Recent advancements in wireless communications and microelectronics, in addition to subsequent

price reductions, have enabled the utilization of Wireless Sensor Networks (WSNs). The selection

of a particular communication technology for radiological waste package monitoring applications

strongly depends on the characteristics of the IoT environment, the number of sensor devices,

energy requirements, network scalability, and so forth.

Some reference data has to be transferred during the real time communication with the real time

database to be able to check if the data received are corrected and transmitted safely, in particular:

a) the MAC address of the device sending the data

b) the strength of the signal associated to the device where the sensor node is transmitting to

the associated router.

c) a unique authorization key to write in a file.

There is also a set of characteristics information associated to each sensor node, in particular:

a) the data-rate (kbps)

b) the sampling rate (Hz)

c) the total number of sensors communicating with it

d) the total number of associated ADC (none, 12-bit, 16-bit, 24-bit)

e) the power consumption (W)

f) the level of “privacy”

g) the maximum latency allowed (ms).

3.2.3.5 RAW data

The RAW data are essentially imaging data. Measures originating from an image are to be

considered periodic measures which need to be validated on the screen:

• in open format (JPG, .PDF, .TIFF, BMP...)

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 28/77

• in proprietary format (they cannot be open without the program used to generate it)

All imaging data produced can be made available from the originating organization by uploading to

a common storage (i.e., uploaded on VTT MS Azure BLOB (working as an archive) and a link to the

space storage (i.e., MS Azure BLOB) could be associated to the Waste Package meta description.

The RAW data in PREDIS are mainly expected to be produced by BAM in Task 7.3. They are coming

from the following measurements:

• High frequency ultrasonic echo: Data are produced as .lbv file which contains binary data

storage of all original time-domain signals and the corresponding configuration.

• Low frequency ultrasonic echo to inspect the container concrete filling in term of structure,

presence of voids, objects, and cracks. Sensors are placed outside the container. Data

management issues are like high frequency ultrasonic echo. Information needs to be

validated visually.

• Ultrasonic Monitoring (place sensors inside the package filled with concrete to monitor

changes, crack development, stiffness).

• Digital Image Correlation (DIC) to verify container surface inspection from remote to check

structure, cracks, deformation.

• Acoustic Emission analysis (AE) to inspect a container by using external sensors to detect

changes in concrete during filling and to observe crack development. Approaches in

recording and analysing AE signals can be divided into two main groups: parameter-based

(classical) and signal-based (quantitative) AE techniques.

RAW Input data can be originated also from other organizations and/or in the frame of other EU

projects, in particular:

a. UJV (Organization):

• Gamma Scanner: This technology is addressed to quantify gamma emitters (Cs, Co)

from remote for inspection purpose inside a container.

• Radiography: The based concept is to use a 9 MeV LINAC in order to check the

density distribution

b. MICADO Project (https://www.micado-project.eu/)

• Gamma camera (Orano DS, ENEA) addressed to hot spot search from remote for

inspection purpose.

• Gamma spectrometry (Orano DS, ENEA) to quantify gamma emitters (Cs, Co) from

remote for inspection purpose.

• Neutron active measurement (Orano DS, CEA) to quantify nuclear materials (Pu, U) in

non-cemented package remotely.

• Neutron passive measurement (Orano DS, CEA) to quantify nuclear materials (Pu, U) in

the non-cemented package remotely.

• Photofission measurements (Orano DS, CEA) to quantify fissile materials in the

cemented waste package from remote for inspection purposes. Fissile materials should

not disappear once the package has been realized.

• SciFi technology (Orano DS, INFN) Gamma dose rate field associated with each drum is

monitored by using optical fibers put outside the drum

• SiLiF technology (Orano DS, INFN) Neutron dose rate associated with each package is

monitored by using SiLiF detectors put outside the drum

c. CHANCE project (https://www.chance-h2020.eu/) to understand current characterization

methods and quality control schemes: Calorimetry as an innovative non-destructive

technique to reduce uncertainties on the inventory of radionuclides; Muon Tomography to

address the specific issue of non-destructive control of the content of large volume nuclear

https://www.micado-project.eu/
https://www.chance-h2020.eu/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 29/77

waste; Cavity Ring-Down Spectroscopy (CRDS) to characterize outgassing of radioactive

waste.

3.2.4 Definition of Output Data

Data storage in a database can be retrieved by a query, which is a request for data or information

from a database table or combination of tables. This data may be generated as results returned by

Structured Query Language (SQL) or as pictorials, graphs, or complex results, e.g., trend analyses.

3.2.4.1 Queries for Prediction

Queries for prediction are also called “data mining” and are influenced from different factors. The

main is the table organization and if the selected data are present in column or not. For data mining

the organization of data shall allow to select a “column” and a “field”.

3.2.4.2 Queries for Dashboarding

To create a real-time SQL dashboard, an AI tool that can fetch live data from relational databases is

needed. Alternatively, query results from SQL can be exported as a CSV and plugged into Google

Data Studio or Excel, but this is not real-time.

In general, the best way to proceed is to use a third partner software package; in particular, if people

are using MS Azure the best way to proceed is to use MS Data Explorer (see https://db-

engines.com/en/system/Microsoft+Azure+Data+Explorer) or if people are using influxDB

(www.influxdb.com) the best way could be to write a script by using flux syntax.

3.2.5 Definition of Life Management Requirements

Data lifecycle management (DLM) (see https://www.ibm.com/topics/data-lifecycle-management) is

a policy-based approach to manage the flow of an information system's data throughout its lifecycle:

from creation and initial storage to when it becomes obsolete and is deleted.

DLM products automate lifecycle management processes. They typically organize data into separate

tiers according to specified policies. They also automate data migration from one tier to another

based on those criteria. As a rule, newer data and data that must be accessed more frequently is

stored on faster and more expensive storage media, while less critical data is stored on cheaper,

slower media.

DLM can be broken into multiple phases that provide a framework for working with data throughout

its lifecycle. Although different resources identify these phases in various ways, they often follow a

structure like this:

• Generate and collect data. Structured and unstructured data is continuously being created

by users, devices, applications, machinery, IoT devices and other means. The way in which

that data is captured depends on how it is generated and the types of data and applications.

In some cases, not all generated data is collected. For example, machinery data might

generate enormous amounts of sensor data, but only anomalous data is collected.

• Store and manage data. Data must be stored in a stable environment and properly

maintained to ensure its integrity, security, and protection. During this phase, the data is

typically processed in some way, such as being encrypted, compressed, cleansed, or

transformed. This phase also makes sure that systems are in place to ensure availability and

reliability and to implement redundancy and disaster recovery.

• Use and share data. Data is valuable only if authorized users can work with it as needed to

carry out their day-to-day operations. During this phase, users access and modify data as

needed and carry out other data-related operations, such as collaboration, business

https://db-engines.com/en/system/Microsoft+Azure+Data+Explorer
https://db-engines.com/en/system/Microsoft+Azure+Data+Explorer
http://www.influxdb.com/
https://www.ibm.com/topics/data-lifecycle-management

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 30/77

intelligence, advanced analytics, or visualization. Data usage can also result in additional

data being created, which must then be stored and perhaps further processed. In effect, this

phase is what enables authorized users to be able to do their jobs.

• Archive data. At some point, data is no longer needed to support the everyday applications

and workflows, in which case, the data can be archived in a secure, long-term storage system

such as tape storage or a cloud platform. The data might still be needed at some point for

compliance, analysis, reporting, or other purposes, which means it must remain available

and viable, but it isn't required for daily operations. The data should also be fully protected,

just like active data.

• Destroy data. When data has reached its end-of-life, it can be permanently deleted, but this

must be done securely and without violating applicable data protection regulations.

The third stage might result in additional data being generated. The first three stages often occur

simultaneously, with data being continuously generated, collected, stored, managed, and made

available for authorized usage.

3.2.6 Databases Trade-Off Analysis

More than one type of database is expected to be necessary with different functions and/or

performances, in particular:

a) Metadata are more addressed to SQL database (structured mode)

b) Times series or “formatted” data are more addressed to “not only SQL” databases

(unstructured)

The reason of this choice will be explained in the next paragraphs.

Databases can save information in structured mode or unstructured mode:

• Structured: MS SQL, MySQL, MariaDB, PostgreSQL, SQL Lite (Engine), etc...

• Unstructured (not only SQL): MongoDB, Amazon DynamoDB, SQL Lite 3 (Engine), etc...

3.2.6.1 SQL Databases

SQL stands for Structured Query Language. Developed in the 1970s, SQL is the industry-standard

language for organizing, editing, and managing relational databases.

SQL databases are table-based. This means they organize and store data in tables with predefined

categories or columns. Relational databases contain structured data, such as names, email

addresses, and phone numbers. A relational database matches data by using common

characteristics found in the dataset, resulting in a group called a schema. Using SQL, you can add,

delete, search, update, and organize data records in a relational database. It has since become an

industry standard, with many popular relational databases using SQL, including MySQL Database,

Oracle, and Microsoft SQL Server.

SQL databases are all pretty similar, but each one uses a slightly different version of the SQL

language. Here are some common SQL databases with a few details about them:

• MySQL https://www.mysql.com/

▪ Free and open-source

▪ Available for all major platforms

▪ Huge community of developers

• Oracle https://www.oracle.com/

▪ Commercial

▪ Also has a procedural language

▪ Advanced transaction control

https://www.mysql.com/
https://www.oracle.com/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 31/77

• PostgreSQL https://www.postgresql.org/

▪ Free and open-source

▪ High ACID compliance

▪ Has JSON fields for unstructured data

• Microsoft SQL Server https://www.microsoft.com/it-it/sql-server

▪ Commercial database system by Microsoft

▪ Also has a procedural language for writing procedures

▪ Works on Windows and Linux

• SQL Lite 3 https://www.sqlite.org/index.html

▪ Free and open-source

▪ Serverless database management system that can be embedded directly into an

application

▪ Not suitable for multiple user access (i.e. networking with different IP)

▪ Limited database size (i.e. each table < 2 GB)

• MariaDB https://mariadb.org/

▪ MySQL code modifications made in to improve its performance, scalability, and features

▪ GPL 3.0 license allows easily integration into closed source software applications

▪ Support for stored procedures, triggers, and views (as Microsoft SQL)

▪ Community driven

Since each SQL database has different characteristics, the choice is depending from the project. In

general, open-source database should be preferred.

3.2.6.2 NoSQL Databases

NoSQL stands for Not Only SQL, or Non-SQL, and refers to non-relational databases. While SQL

itself is a query language that communicates with databases, NoSQL is an adjective used to describe

a non-relational database that doesn’t require the SQL language.

In a NoSQL database, unstructured data can be stored across multiple servers and processing

nodes. Because non-relational databases don’t require fixed table schemas, they can not only store

structured data but also semi-structured and unstructured data. This makes them easier to scale and

manage, especially for organizations with massive data storage needs.

Some examples of NoSQL databases include MongoDB, RavenDB, Cassandra, BigTable, and

CouchDB. SQL Lite 3 is declaring itself as a NoSQL database.

Most NoSQL databases can contain the following four data types:

• Document-oriented stores. These let a key pair with a document. Documents can hold a

variety of objects like key-array and key-value pairs, as well as other documents.

• Key-value stores. These are simple databases that store information in the form of attributes

(keys) and values. In some cases, values can have types like “string” or “integer.”

• Graph stores. These store data about networks in a graph-oriented format.

• Wide-column stores. These help with handling large amounts of data in the form of columns.

With auto-sharing, NoSQL databases can share data across servers without complex programming

or code. This balances the processing load of storing and managing data across multiple servers,

whereas SQL databases rely on a single server. This also makes NoSQL databases more secure in

the event of a server crash — if one server goes down, the others in the system will still function and

be able to access and store data.

Modern programming is often iterative, meaning that programmers gradually add to a database or

application over time. An iterative programming approach can be a challenge when using SQL

https://www.postgresql.org/
https://www.microsoft.com/it-it/sql-server
https://www.sqlite.org/index.html
https://mariadb.org/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 32/77

servers because of their fixed schema structure. This makes it time-consuming to add to or change

the structure of the data and records in a SQL database.

NoSQL databases are more flexible and compatible with iterative programming. Because defining

schemas isn’t necessary at the start and NoSQL databases can handle more than one type of data,

programmers can add or change the structure of data and records as they go. These minor changes

don’t disrupt the entire system or require large data transfers.

All SQL databases are pretty similar to each other. But the similarity between NoSQL databases

often stops at not using SQL. There are quite a few types of NoSQL databases, with MongoDB being

the most common. Here are some common NoSQL databases:

MongoDB (https://www.mongodb.com)

Stores data as JSON documents

Can scale quickly

Is really fast for simple queries

Redis (https://redis.io/)

Stores key and value sets

Is very fast

Is commonly used for high-speed caching

DynamoDB (https://aws.amazon.com/it/dynamodb)

Provided by Amazon Web Services

Similar to MongoDB

Has a simple JavaScript Interface

CouchDB (https://couchdb.apache.org/)

Data stored as JSON documents

Can be queried from a web browser

Built-in conflict resolution.

3.2.6.3 Blockchain as tracking system

Blockchain technology enables the tracking and tracing of waste from source to disposal site,

creating a transparent and tamper-proof record of the waste's journey. This enhances accountability,

deters fraud, and ensures compliance with environmental regulations.

By attaching a digital "tag" (i.e., “token”) to each waste item or batch, its journey can be tracked and

recorded on a decentralized and immutable ledger. This means every participant in the waste

management chain – from producers to transporters to disposers – is held accountable for their part

in the process. Any attempts to tamper with the records would be immediately apparent, providing a

robust deterrent against fraudulent activity.

When data can automatically identify and correct itself based on coded business logic (i.e. smart

contracts) and consensus, participants are intrinsically able to trust it. When two businesses work

together, they almost never share a single database with a single set of records, because the

database is being maintained and updated by a database administrator (DBA). That DBA is being

paid by one of the companies and thus has a stake in the success of one company but not

necessarily the other. If they want to make a change that benefits their company, the other company

will never know. Alternatively, on a more nefarious note, if a competitor decides to pay off the DBA,

they can make any change they want to the database without either participant ever knowing.

When blockchain technology is incorporated into the data process, you remove the single point of

failure, in this case the DBA, and ensure that if one of the participants makes a change it is

immediately corrected by the other participants. After the data corrects itself, the unalterable record

https://www.mongodb.com/
https://redis.io/
https://aws.amazon.com/it/dynamodb
https://couchdb.apache.org/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 33/77

of changes will also indicate which participant tried to make the change. With the data process

secured, a business can not only trust the data shared between the companies they are working

with but can even trust the data shared by competitors.

The MIT (Massachusetts Institute of Technology) gives the possibility to generate “smart contracts”

for a single project in the frame of Django rest framework for the Internet of Things (IoT) based on

Ethereum (see https://github.com/SandroLuck/SCGenerator) .

3.2.6.4 NoSQL vs SQL

There is an intense debate between developers regarding the merits of NoSQL and SQL system.

The main difference between the modes to operate are here in reported.

Database type

• SQL databases are relational databases (RDBMS), meaning they store data in tables with

predefined columns and rely on fixed table schemas to relate data records to each other.

• NoSQL databases are non-relational (or distributed) databases, meaning they do not require

tables. Non-relational databases can store unstructured data using documents, key-values,

graphs, or columns.

Fixed schema vs. dynamic schema

• SQL databases require a fixed (or predefined) schema. This means you must define the

structure of your data first before working with it. All data must follow that same structure.

This requires a lot of preparation upfront. Changing the structure (or schema) of your data is

difficult and time-consuming, as it requires starting over with a new predefined schema and

updating all your records to match the new schema. Even small changes may require system

downtime or reduced service for a period while the database gets updated.

• NoSQL databases use dynamic schemas, meaning you can create data without having a

defined structure in place. Each data record can have a unique structure, typically organized

as a document, graph, column, or key-value. This gives you far more flexibility, as you don’t

have to spend time upfront defining a schema, and you can change and update the schema

as you go. Change management is far easier and rarely requires any system downtime for

small adjustments in records and structure.

Scalability — vertical vs. horizontal scaling

• SQL databases scale vertically. This means that the database uses a single server. To scale

(or increase the load) on that server, you can add RAM, add or upgrade the CPU, and add

or upgrade the SSD. The only way to scale a SQL database for increased data is to improve

the server’s capacity or purchase a larger, more expensive server that can handle more data

storage.

• NoSQL databases are horizontally scalable. They rely on nodes that can share data and

processing power. This means that you can add more servers to a NoSQL database to

handle more data (increase the load). NoSQL databases can use multiple servers and share

data across them. Because they use low-cost hardware, it’s often less expensive to scale

NoSQL databases, and it requires little or no application downtime. This makes it easier to

scale as the amount of data increases and means that NoSQL databases can become far

larger than SQL databases, which are limited to only one server.

Data volume capacity

• While SQL databases can store millions of records, they do hit a storage limit eventually.

One server can only hold so much data before it hits its maximum capacity, no matter how

large the server. Purchasing increasingly larger servers also brings steep financial

https://github.com/SandroLuck/SCGenerator

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 34/77

commitment, meaning most companies will hit a maximum server size that they can afford to

use for a relational database.

• On the other hand, NoSQL databases can handle a far higher volume of data, as they can

spread data across thousands of connected servers. For organizations that need to store

massive amounts of unstructured data, NoSQL databases are the obvious choice. They can

handle far more data than SQL databases, with almost no impact on application performance.

Caching

• SQL databases need a separate infrastructure to cache data, which requires additional

hardware and slows the performance of the databases.

• NoSQL databases can cache data directly within the system memory, resulting in much

higher performance.

Advantages of NoSQL databases:

Scaling

• For large organizations, the relationships and tables that make up SQL databases can

number in the millions. Combine this with millions of users performing lookups in these tables,

and the system can suffer major performance issues. This is one of the main reasons

organizations like Google and Amazon have switched to non-relational database systems.

Complex data management

• In addition, large-scale programming projects using complex data types and hierarchies,

such as XML and JSON, are difficult to incorporate into SQL. These data types, which can

contain objects, lists, and other data types themselves, do not map well to tables consisting

of only rows and columns.

• Maintaining high-end relational database systems is expensive and is only possible with the

assistance of highly skilled database administrators. This requires a significant investment

for organizations.

Maintenance

• On the other hand, NoSQL databases require less management overall. Features like

automatic repair, easier data distribution, and simpler data models mean that NoSQL

databases require less administration and tuning than SQL databases.

• NoSQL databases typically use clusters of cheap commodity servers to manage increasing

data and transaction volumes, while relational databases tend to rely on expensive

proprietary servers and storage systems. So, in general, storing and processing data costs

less in a NoSQL database than it does in a SQL database.

Here is a breakdown of when the use a NoSQL database is preferred:

• The traditional RDBMS model performance is not sufficient.

• A flexible data schema is needed

• Data from distributed sources need to be logged

• The constraints and validation logic, that a SQL database provides, are not needed.

Advantages of SQL databases

Support

• Customer support is currently stronger for relational databases because they have been

around longer and have a global community of users. Relational database vendors also

provide a higher level of enterprise support.

• Because NoSQL databases are newer, small start-up companies provide NoSQL system

support. Although NoSQL is growing, the current providers lack the global reach, resources,

or credibility of Oracle, Microsoft, or IBM — the big names associated with SQL.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 35/77

Complex queries

• While NoSQL databases have evolved to meet the scaling demands of modern Web 2.0

applications, their query languages are harder to use for ad-hoc query and analysis.

• It is much easier to code a SQL query, which makes ad-hoc analysis a simple task. In NoSQL,

even a simple query requires significant programming expertise. NoSQL has a steeper

learning curve, especially for users accustomed to working with Excel and SQL.

User-friendliness

• Currently, the complexity of NoSQL makes it a good fit primarily for large technology

companies that collect massive amounts of unstructured data and can afford to pay a trained

database administrator with knowledge of NoSQL.

• Smaller projects and organizations typically function just fine with SQL. While it may be

difficult in some cases, it’s possible to map complex objects using tables. There are powerful

tools available, such as the Oracle database system, which are very effective.

Here is a breakdown of when the use of a SQL database is preferred:

• A simple query language to interact with data is needed

• Use joins and complex queries is required

• Data is strictly structured, and that structure will not change often.

• Business rules depend on transactions.

3.2.6.5 Blockchain vs Centralized Databases

The primary difference between a blockchain and a database is centralization. While all records

secured on a database are centralized, each participant on a blockchain has a secured copy of all

records and all changes so each user can view the provenance of the data.

3.2.6.6 Databases Selection

The choice between SQL and NoSQL is related comes down to a few key factors.

The type of data used:

For structured data, SQL is likely the right choice. SQL databases work well for transaction-based

needs, such as customer relationship management (CRM) solutions and accounting tools. A

relational database will store this data in a structured way, with each row representing a distinct

record and each column a distinct attribute in that data.

On the other hand, if primarily unstructured data that won’t fit neatly into a table format or the nature

of the data to be handled in not established, a NoSQL database would be a better option. SQL

databases cannot handle unstructured data and are less flexible when changing the structure of data

in the middle of a project.

The need to be compliance with:

If compliance with ACID (Atomicity, Consistency, Isolation, and Durability) is required, an SQL

database is best. Because relational databases store records in a fixed table schema with distinct

relationships between rows and columns, they are well suited to ACID compliance.

If compliance with the ACID model is not required, and you need more flexibility, a NoSQL database

may be a better fit. NoSQL databases follow the BASE model (Basic Availability, Soft state, and

Eventual consistency). This makes the database more flexible and scalable and allows the user to

change his data structure mid-project with little or no downtime for its application.

How query on data will be performed:

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 36/77

How often the user needs to query his data should be considered. It’s far easier to write queries with

SQL than with a NoSQL query language. Querying a NoSQL database requires writing complex

queries. If the user will need to query his data quickly or the user responsible for querying is not an

advanced programmer, SQL is a better fit. If the user won’t need to query his data often or can afford

the skill set of a NoSQL data analyst, then a NoSQL database may be preferred.

What are user’s future data needs:

It is important to consider how user organization expects to scale moving forward. If there is the need

to handle exponentially larger volumes of data, a NoSQL database is easier and less expensive to

scale up.

SQL databases are more costly to scale and often require system downtime during the data

migration process.

Conclusion:

Based on the above considerations, it has been decided in the frame of Subtask 7.5.1 to choose as

SQL database reference choices to investigate in case studies: Microsoft SQL, PostgreSQL, and

SQL Lite 3 to associate to «metadata» management.

For “time series” and or formatted data, it has been decided to use a NoSQL database in an indirect

form, i.e., use a commercial product with NoSQL databases inside and it offers the capability to

facilitate the user in write AP named InfluxDB (www.influxdata.com).

It must be pointed out that Microsoft SQL is a typical commercial package while PostgreSQL and

SQL Lite 3 are open-source packages and hence candidates to be more flexible to build API and to

be interfaced with InfluxDB by the user itself.

The basic concept is the possibility of performing development on local workstations and then

dockerizing to make it callable on the cloud.

3.2.7 API Specification

3.2.7.1 I/O string data format

Many formats can be chosen, but currently, the reference one is worldwide the JSON format, which

is considered a valid alternative to XML. The JSON format is syntactically like the code for creating

JavaScript objects. Because of this, a JavaScript program can easily convert JSON data into

JavaScript objects.

Since the format is text only, JSON data can easily be sent between computers, and used by any

programming language.

• JavaScript has a built-in function for converting JSON strings into JavaScript objects:

JSON.parse()

• JavaScript also has a built-in function for converting an object into a JSON string:

JSON.stringify()

• When storing data, the data must be a certain format, and regardless of where it has been

chosen to store it, text is always one of the legal formats.

• JSON makes it possible to store JavaScript objects as text.

JSON syntax is derived from JavaScript object notation syntax:

• Data is in name/value pairs

• Data is separated by commas

http://www.influxdata.com/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 37/77

• Curly braces hold objects

• Square brackets hold arrays

In JSON, values must be one of the following data types: a string, a number, an object, an array, a

Boolean, null.

JSON is like XML because

• Both JSON and XML are "self-describing" (human readable)

• Both JSON and XML are hierarchical (values within values)

• Both JSON and XML can be parsed and used by lots of programming languages

• Both JSON and XML can be fetched with an XMLHttpRequest

JSON is unlike XML Because

• JSON doesn't use end tag

• JSON is shorter

• JSON is quicker to read and write

• JSON can use arrays

The biggest difference is that XML must be parsed with an XML parser. JSON can be parsed by a

standard JavaScript function.

3.2.7.2 Plugins versus Python Scripts

A Python script is a set of commands included in a file that is intended to be run similarly to a

program. The concept is that the file will be run or performed from the command line or from within

a Python interactive shell to perform a particular activity.

Python files can be also organized in nestled modules to perform different functions with a single

call. User has the control step by step of the performed operations.

Plugins are instead third part pieces of software on which the user has not the full controls as well

as debug possibilities. Bugs can be present inside.

Plugins are diffuse in the open-source community (see GitHub community) since they allow to write

piece of code with the minimum effort.

Some applications as well as influxDB (www.influxdb.com) allows the user to provide source data in

both ways, but for advanced users the python script option is always suggested.

3.3 Data processing and integration

This chapter reports the work done in PREDIS Subtask 7.5.2. In addition to the progress reported

here, this subtask handled the integration of the whole data management framework within Task 7.5

and its partners, as well as to other relevant tasks of PREDIS project.

3.3.1 Data preprocessing

This section introduces some preprocessing steps needed in data processing. The introduction is
generic because each model development and prediction generation have their own special
requirements. Model development and predictions (including machine learning based surrogates)
were topics in Task 7.4 with their own deliverable reports. However, some preprocessing steps may
be alternatively implemented and integrated directly into the data management framework. So, some
technologies and libraries are also introduced. In addition, the Azure cloud computing environment
was tested to be suitable for performing these operations, and simple trials were done with Azure AI

http://www.influxdb/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 38/77

studio. However, more focus was needed on the other parts of the data-driven workflow: data
collection, integration of the data management framework subsystems, and administration of the
different development platforms.

The goal of data preprocessing in predictive maintenance is to clean, transform, and prepare the
raw data from sensors, equipment, and other sources for effective use in predictive models. The
process is often iterative. As new data becomes available, the models may be retrained and refined
to adapt to changing conditions and improve accuracy. Potential data preprocessing needs for
condition monitoring data include:

1. Data Integration

2. Data Cleaning

3. Time Series Data Handling

4. Handling Time-Dependent Sequences

5. Labelling

6. Data Transformation

Data integration means connecting information sources and data. Especially in condition monitoring
systems, combining data from different sensors and sources is important for analysis and can
improve the accuracy of condition monitoring. By combining information, new and more precise
insights are often achieved.

Data Cleaning means, for example, processing missing values, detecting outliers in measured
values by replacing missing data or removing incomplete data. For example, the measurement data
of the sensor may contain noise that can be filtered, and the detected incorrect values can be
removed to improve the quality of the data.

As already stated in health monitoring applications, data comes from many different sources at
different frequencies and is timed with variable regularity. In this case, the time series data must be
aligned in order for the analysis to be meaningful. This can mean, for example, resampling the data
at a regular interval so that the data is consistent. Sometimes the data can have interesting features
such as trends or other regularities. There are many key figures for detecting these, such as moving
average, standard deviation.

Processing time series data means, for example, time alignment. Especially, if the data comes from
several sensors or sources, then the time must be converted to a common date representation into
appropriate date-time formats and, in addition to this, handling missing values and outliers in
measured values.

Data labelling means that informative labels are added to the data, which serve as information for
machine learning. Labels can indicate important information about the data, such as anomalies.
Anomalies are often central and interesting in condition monitoring. The process can be automated
to some extent.

Data Transformation means, e.g., scaling and normalization and feature engineering. Different data
sources produce data with different scales. Normalization means that the data is scaled in such a
way that they are brought to a common scale (i.e., mean removal and variance scaling). Feature
engineering, on the other hand, means extracting interesting information from raw data and
converting it into a format understood by machine learning models.

Data preprocessing libraries for Python

Numpy (https://numpy.org/), a library of numerical operations, has been made for the Python
language, and many other libraries are built on it. It supports data manipulation based on arrays and

https://numpy.org/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 39/77

matrices. Pandas (https://pandas.pydata.org/) is a easy to use and powerful data analysis library. It
provides data structures such as DataFrames that make data cleaning, transformation, and analysis
possible. SciPy (https://scipy.org/) is based on NumPy and extends for scientific and technical
computing modules. In terms of condition monitoring, libraries related to signal processing and
statistical analysis are useful. VTT’s O&M analytics is a python library specialized on machine
diagnostics, prognosis, and predictive maintenance. It is built on numpy/scipy. Scikit-Learn
(https://scikit-learn.org/stable/): Scikit-Learn is widely used machine learning library. It is aimed at
generic machine learning tasks, such as classification, regression, etc. It has a comprehensive set
of tools for preprocessing, feature selection, and modelling. Due to its generic nature, it is also well
suited for condition monitoring applications. Matplotlib is a comprehensive data visualization library.
With it, you can create static, dynamic, and interactive visualizations. Seaborn is based on Matplotlib
and provides a higher-level interface for making visualizations. In condition monitoring and
forecasting, more complex methods such as deep learning and neural networks are often used,
which can be used to model increasingly complex phenomena. Libraries such as TensorFlow and
PyTorch (https://pytorch.org/) have been made for these. They are widely used and have a large
community.

As for time series analysis, Statsmodels (https://www.statsmodels.org/stable/index.html) is a
statistical analysis library, provides a comprehensive set of tools for statistical computing, such as
time series analysis. Other libraries that specialize in this are Prophet, tsfresh, and tsflex.

Tsfresh (https://tsfresh.readthedocs.io/en/latest/) is a Python package that enables the extraction of
time series features from data for analysis or machine learning use by simplifying automatic feature
extraction.

Featuretools is an open source Python framework that enables the use of temporal and relational
data designed for automated feature design.5

Comparison of the Python libraries

1. Functionality

a. Numpy and Pandas are well suited and versatile for generic data processing.

b. Scikit-Learn is well suited and versatile for generic machine learning tasks.

c. TensorFlow and PyTorch specialize in neural networks and deep learning.

d. Prophet, and tsfresh are libraries specialized for time series analysis.

2. Licensing

a. VTT’s O&M analytics library is proprietary (VTT)

3. Time series analysis

a. Statsmodels, Prophet, and tsfresh are well-suited libraries for time series.

b. Scikit-Learn is also suitable for analysing time series and feature engineering of time-
related features.

4. Flexibility and customizability

a. Scikit-Learn, TensorFlow, and PyTorch are very flexible and applicable to complex
machine learning tasks.

b. Statsmodels is well suited for complex statistical analyses.

5. Ease of use

https://pandas.pydata.org/
https://scipy.org/
https://scikit-learn.org/stable/
https://pytorch.org/
https://www.statsmodels.org/stable/index.html
https://tsfresh.readthedocs.io/en/latest/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 40/77

a. Pandas and NumPy are widely used and well known.

b. Scikit-Learn's API is claimed to be consistent which makes it easier to use in long run.

c. TensorFlow and PyTorch are more complex in their applicability.

6. Documentation

a. Numpy, Pandas, and Scikit-Learn libraries have extensive documentation.

b. TensorFlow and PyTorch are widely used in deep learning and have a large
community that could be helpful.

7. Data visualization

a. Matplotlib and Seaborn are specialized for data visualization and can be customized
to a wide range of requirements.

8. Feature extraction

a. Featuretools, tsfresh, and tsflex (https://predict-idlab.github.io/tsflex/) are libraries for
automated feature engineering.

9. For Visual inspection/monitoring

a. OpenCV is a library specialized in computer vision and image analysis.

The aforementioned data processing libraries are related to varying degrees to generic and more
specialized methods. The list is not all-inclusive, but they already largely cover the needs and
requirements related to condition monitoring. In addition, the list can be supplemented by
implementing additional features for e.g. generic libraries, such as in VTT O&M Analytics.

3.3.2 Automatic Azure configuration

The data management framework and the integration of components were based on Azure platform
as described in section 3.1. For a fluent and efficient set up and maintenance the platform and its
resources are managed by Azure CLI scripts. This section introduces these scripts, Azure Resource
Manager (ARM) templates and their benefits for an infrastructure deployment.

Azure resource management can be done using scripts or Azure portal. Using scripts and Azure
Resource Manager (ARM) templates facilitates automation and resource maintenance in Azure. In
the context of a broader toolchain and automation process, scripts and ARM templates work together
to achieve end-to-end automation and infrastructure management. One of the advantages is
integration with CI/CD (Continuous Integration and Continuous Deployment). Both scripts and ARM
templates are essential in CI/CD pipelines. Scripts can be used to automate many tasks in
continuous development, and ARM templates are used to determine infrastructure deployment.
Another benefit is ensuring security. Both scripts and ARM templates can enforce security definitions
and compliance checks. This ensures that security and compliance requirements are met. As for the
wider toolchain and automation strategy, scripts and ARM templates are integral to this whole. They
provide an approach to more efficient and consistent management of resources and infrastructure
as part of an automation ecosystem in a wider context.

In managing Azure resources and infrastructure, there are potentially many benefits when combining
the use of both scripts and ARM templates. With the automation of tasks by scripts, manual work
and thus also the risk of human errors is reduced. Scripts can be customized and extended to meet
specific requirements, allowing for custom resource management and configuration. Resource
management is faster using scripts than using Azure portal, which shortens development and

https://predict-idlab.github.io/tsflex/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 41/77

deployment cycles. There is a cost to maintain Azure resources, even when the resources are not
in any use. Scripts can make it easier to reduce costs as they can be used to shut down or remove
unnecessary resources.

Example of CLI scripts:

#params file

OWNER=”Owner Name”

RG_OWNER=$OWNER

PROJECT_END_DATE=31.8.2024

RG_OWNER_TAG=”Owner=$RG_OWNER”

RG_PROJECT_END_TAG=”project end date=$PROJECT_END_DATE”

RG_TAGS=(“$RG_OWNER_TAG” “$RG_PROJECT_END_TAG”)

RG=Rg

VM_OWNER=$OWNER

VM_OWNER_TAG=”Owner=$VM_OWNER”

VM_UPDATE=”auto-dev”

VM_UPDATE_TAG=”Update=$VM_UPDATE”

VM=Vm

VM_ADMIN=admin_user_name

VM_SKU=Standard

VM_IMAGE=Ubuntu2204

VM_TAGS=(“$VM_OWNER_TAG” “$VM_UPDATE_TAG”)

ORGANIZATION=PREDIS_ORGRANIZATION

PURPOSE=Test

LOCATION=westeurope

#composing

NAME=EuwDev”$ORGANIZATION””$PURPOSE”

#composing

RG_NAME=”$RG””$NAME”

VM_NAME=”$VM””$NAME”

STORAGE_NAME=”storagename=PREDIS_storage”

STORAGE_SKU=”storageSKU=Standard_LRS”

STORAGE_PARAMS=(“$STORAGE_NAME” “$STORAGE_SKU”)

VM_PARAMS=(“vmname=PREDIS_VM”)

Example of configuring resources with CLI commands (creating resource group):

#!/bin/bash

source ./params

echo “Creating resource group: $RG_NAME to $LOCATION”

az group create \

 --name $RG_NAME \

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 42/77

 --location $LOCATION \

 --tags “${RG_TAGS[@]}”

Creating a virtual machine:

#!/bin/bash

source ./params

echo “Creating VM: $VM_IMAGE”

az vm create \

 --resource-group $RG_NAME \

 --name $VM_NAME \

 --image $VM_IMAGE \

 --public-ip-sku $VM_SKU \

 --admin-username $VM_ADMIN \

 --tags “${VM_TAGS[@]}” \

 --generate-ssh-keys

The use of ARM templates offers the several benefits. ARM templates allow infrastructure to be
defined and managed as code, which enables version controlling and ease of sharing. Templates
enable easy replication of environments and resources. This is useful for development, testing, and
recovery. It is also possible to decompose large and complex ARM templates into smaller reusable
components. From these, you can create new configurations for different requirements as needed.
This facilitates the management of complex infrastructures in particular. With the help of ARM
templates, the values can be parameterized, which makes it easy to modify the templates to different
situations and requirements. ARM templates offer an audit trail of changes, enabling tracking
changes and approvals made to resources, what changes were made, and their timestamps.

An example network resource configuring with ARM template:

1) {

2) “name”: “[parameters(‘networkSecurityGroupName’)]”,

3) “type”: “Microsoft.Network/networkSecurityGroups”,

4) “apiVersion”: “2019-02-01”,

5) “location”: “[parameters(‘location’)]”,

6) “properties”: {

7) “securityRules”: “[parameters(‘networkSecurityGroupRules’)]”

8) },

9) “tags”: {

10) “Owner”: “Owner Name”,

11) “Project End Date”: “31.8.2024”,

12) “Update”: “auto-dev”

13) }

14) },

This project used scripts to manage Azure resources. Command Line Interface (CLI) scripts and
Azure Resource Management (ARM) templates were written based on the original resource
definitions made using the Azure portal interface. In addition, ARM models were defined for desired
complex resource configurations such as Virtual Machine for InfluxDB. Scripts and ARM models are
stored and commented in the Gitlab repository. The following steps were taken in the development
process:

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 43/77

1. Required resources selection (e.g., virtual machines, databases, data factory and
pipelines…)

2. Azure resource settings (e.g., resource groups including location and tags etc.)
3. Networking (e.g., virtual networks, subnets)
4. Authentication and Authorization
5. Data Storage and Backups
6. Scaling and Load Balancing

The aim is to make setting up similar systems easy with the help of these already existing scripts.
Based on the requirements of the corresponding system, the configuration can be changed. Only a
partial example of such a system and its configuration is provided here, as configuration is a vast
and complex process.

1. Environment
a. Access to Azure subscription
b. Access to Gitlab/Github repositories for scripts and ARM-templates

2. Clone scripts from repositories
3. Deploy resources using CLI commands and ARM templates
4. Configure resources
5. Test and verify

The installation of the corresponding system proceeds as follows. First, it is necessary to prepare
the environment (i.e., access to azure subscription and gitlab/github repository). The necessary
scripts and ARM templates are cloned from the repository. Resources are set up with CLI commands
and ARM templates. After that, the set up resources are configured according to the needs of the
new system. At this stage, testing and verification is important.

3.4 Decision framework

This chapter reports the work done in PREDIS Subtask 7.5.3 by partner IFE on the decision

framework system. A decision framework refers to principles, processes, and methods to proceed

from available information and needs to choices that inform actions and outcomes. The processes

at radioactive waste storage are procedures-in-series where tasks and options must be selected,

and this selection will be more efficient when supported in the decision framework.

3.4.1 Design and functionalities

The decision framework looks at ways to support decision-making by presenting information. This
includes:

• 3D Analysis where waste containers and their properties are visualised in 3D.

• Dose Analysis where the reports from scenario planning of work performed in waste facilities
are presented.

• Online analytical processing (OLAP) where waste data is analysed from different points of
view.

• Digital Twin view showing results from digital twins.

• Optimization of container placement to reduce dose-rates

• Dashboards where information for different sources are gathered and customized for different
stakeholders.

3.4.2 Implementation and technology selection

 As part of the project, a prototype for a decision platform was developed. This prototype serves as
a practical testing ground to evaluate the key components and features of a decision-making system.
The platform was developed as a web site with a custom backend. Using a web site have the
advantage of being easy to share without any need for installing any custom software. It’s also
flexible in what is possible to create compared to specialised visualization solutions.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 44/77

The platform uses Typescript and JavaScript both on the backend end and frontend. Various open-
source libraries were used, and the backend runs on Node.js.

3.4.3 Dashboards

A multiply dashboards (Figure 10) were created to showcase information from diverse viewpoints.

The aim was to provide a personalized and targeted presentation of data, ensuring that users could

access and interpret information in a manner that aligns with their unique requirements and

preferences. A top-level dashboard has information about the sites including summaries of

aggregated IoT data, charts from the OLAP tool breaking down the number of drums per site and

waste type as well as alarms and a map showing the locations of the sites. A site and building level

dashboard have mostly the same information as the top level but are filtered on the selected site or

building. A container-level dashboard shows information including charts of the past temperature,

pressure and humidity and a 3D view of the placement of the container within the storage grid.

Figure 10. Example dashboards. Dashboard for a single drum on the left and for a whole site
on the right.

3.4.4 OLAP Analysis

OLAP (Online Analytical Processing) analysis is a powerful data analysis technique that allows users

to explore and interrogate multidimensional datasets with great flexibility. It enables the dynamic

aggregation, disaggregation, and pivoting of data across multiple dimensions, such as time,

geography, or product categories, providing a comprehensive and intuitive view of the information.

OLAP analysis is particularly valuable for decision-making and business intelligence, as it empowers

users to quickly extract insights, identify trends, and make data-driven decisions by slicing and dicing

data in a way that best suits their analytical needs. This multidimensional approach is widely used

in diverse fields, from finance and marketing to healthcare and environmental monitoring, to uncover

patterns and relationships within complex datasets.

For the PREDIS decision platform a concept prototype was developed to show the possibility of

using OLAP analysis of radioactive waste. The concept aimed to enhance decision-making by

collecting and analyzing data from all waste facilities within an organization.

Since real data was not available data was generated. It consisted of 490 containers divided into 3

locations each having between 2 and 6 buildings. Time series data for temperature, pressure and

humidity was generated for each container. In addition, each container was assigned a waste type

to demonstrate that additional data about the containers could be analysed. Furthermore to historical

data, real time data was generated for realism and to see how the system would work in a more

realistic setting. Here sensors were simulated and sent through an MQTT broker to an InfluxDB

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 45/77

server through Telegraf, a server bases agent for collecting and sending IoT metrics. The InfluxDB

was then queried for relevant data.

In this prototype (Figure 11) temperature, humidity and pressure can be aggregated using min, max

or count functions. In addition, the data can be filtered or broken down by time, location or type. The

data can be visualized using charts, like bar and pie chart, or the values can be shown in tables. Ad-

hoc analysis is supported by using drill-down, drill-up, slice and dice operation in with immediate

response.

Figure 11. OLAP prototype allowing ad-hoc analysis of waste containers.

3.4.5 Dose Analysis

Waste storage facilities are potential hazardous environments due to radioactive areas. ALARA

principles stipulate that received doses should be kept as low as reasonably achievable. There exist

tools that can be used to reduce doses by creating, optimizing and analysing work procedures. This

can be done for example by reducing the time spent in high dose areas or introduce shielding.

One such tool is HVRC Vrdose https://ife.no/en/service/hvrc-vrdose/, a 3D ALARA (As Low As

Reasonably Achievable) Planning & Briefing Software developed by IFE (HVRC Vrdose – IFE) .

This software allows the creation of a radiological scene that dictates the calculation of dose rates,

employing methods such as the point-kernel technique with sources and shields or interpolation of

measurements. A dynamic work procedure is designed, akin to an animation, defining the positions

of all workers and moving components. Vrdose provides comprehensive reports summarizing

scenario results, encompassing scenario duration and dose updates, both collectively and

segmented by workers.

https://ife.no/en/service/hvrc-vrdose/
https://ife.no/en/service/hvrc-vrdose/
https://ife.no/en/service/hvrc-vrdose/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 46/77

Within the decision platform, these Vrdose reports are readily accessible (Figure 12), viewable

through the same web interface, facilitating convenient access to dose simulations that prove

invaluable for informed decision-making.

Figure 12.Example of a Vrdose report that is accessible from the decision platform.

3.4.6 3D Analysis

A 3D analysis part of the prototype was created to show some possibilities of 3D visualisation in a

decision framework. The visualisation has two levels:

1. Visualisation of waste storage site(s).

2. Visualisation of waste containers (for simplicity drums was used in the demo).

3.4.6.1 Visualisation of site(s)

If there are more than one waste storage sites, they can be easily switched between by using a

dropdown list (Figure 13). By clicking on the selected building the waste containers in that building

are visualised.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 47/77

Figure 13. Visualization of a waste storage site.

3.4.6.2 Visualisation of waste containers

Here the user can switch between different visualisations of the waste containers (Figure 14). The

implemented visualisations are as follows:

• Waste type (Colour coded, e.g., high level waste is red. Intermediate level waste is orange

and low-level waste is yellow).

• Low-level waste (Highlights the containers with low level waste)

• Intermediate-level waste (Highlights the containers with intermediate level waste)

• High-level waste (Highlights the containers with high level waste)

• Temperature range (Colour coded, e.g., high temperature waste is red. Medium temperature

waste is orange and low temperature waste is yellow).

• Maximum temperature (Highlights the container with the highest temperature)

• Minimum temperature (Highlights the container with the lowest temperature)

• Temperature limit (Using a slider the user can visualise the containers with a temperature

higher than the selected value)

• Pressure range (Colour coded, e.g., high pressure containers is red. Medium pressure

containers is orange and low pressure containers is yellow).

• Maximum pressure (Highlights the container with the highest pressure)

• Minimum pressure (Highlights the container with the lowest pressure)

• Pressure limit (Using a slider the user can visualise the containers with a pressure higher

than the selected value)

• Humidity range (Colour coded, e.g., high humidity containers is red. Medium humidity

containers is orange and low humidity containers is yellow).

• Maximum humidity (Highlights the container with the highest humidity)

• Minimum humidity (Highlights the container with the lowest humidity)

• Humidity limit (Using a slider the user can visualise the containers with a humidity higher than

the selected value)

• Minimum activity (Highlights the container with the lowest activity level)

• Maximum activity (Highlights the container with the highest activity level)

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 48/77

• Activity limit (Using a slider the user can visualise the containers with a activity higher than

the selected value)

• Minimum pH (Highlights the container with the lowest pH)

• Maximum pH (Highlights the container with the highest pH)

• pH limit (Using a slider the user can visualise the containers with a pH higher than the

selected value)

• All (Show all containers)

Figure 14. 3D visualization of the waste types within a waste storage facility building.

3.4.7 Optimization

The precise location for storing waste packages within a facility holds significance due to regulatory

requirements and ALARA concerns. Placing high-activity containers at the center of a grid can

effectively reduce the dose rate in the surrounding area, leveraging the shielding effect provided by

neighbouring packages. As part of the PREDIS project, we have developed an optimization

prototype (Figure 15) with the primary objective of minimizing the dose rate in the vicinity of the

packages by optimizing their placement. It’s worth noting that these algorithms can be extended to

incorporate additional rules. For instance, certain containers, based on their contents, must not be

placed adjacent to each other, or should maintain a minimum separation.

In the absence of real data when creating the prototype, we relied on generated data. The user has

the flexibility to specify the number of waste packages and configure one or more rooms, each

featuring a 3D grid of potential locations. Subsequently, containers with random activity levels are

generated and positioned within the grids, with the highest-activity containers strategically placed at

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 49/77

the center. The final refinement of container placement is accomplished through the utilization of a

Tabu search algorithm.

Tabu search is a heuristic optimization algorithm that has proven to be effective in solving complex

combinatorial and non-linear optimization problems. Developed in the 1980s, tabu search is inspired

by the concept of “tabu” or forbidden moves, which prevents the algorithm from revisiting recently

explored solutions. It operates by iteratively exploring the solution space and making local

improvements while avoiding revisiting the same solutions, ultimately converging toward a high-

quality solution. Tabu search incorporates memory structures to store and manage previously visited

solutions, enabling it to escape local optima and explore a diverse range of potential solutions.

The packing algorithm commences by generating a set of potential moves, and two distinct types of

moves are devised. The first type involves swapping two randomly selected packages, while the

second entails swapping neighbouring packages. Subsequently, the algorithm selects and applies

the best move that isn’t marked as “tabu.” A move is considered tabu if either of its involved locations

was part of another move in a specified number of past iterations. The optimal move is determined

based on its ability to minimize the maximum dose rate in the surrounding area. This iterative process

continues, with the user having control over the duration of execution. Alternatively, it would be

possible to run for a predetermined duration, a fixed number of iterations, or until a statistically stable

optimal solution is reached.

To calculate the dose rates in the vicinity of the packages, a point-kernel method was employed.

Here, each package is modelled as a point source with a defined Co-60 activity and is surrounded

by a shield constructed of concrete to account for its shielding effect. The dose rate was sampled at

around the grid at intervals matching the grid of packages.

Figure 15. Visualization of an early iteration of the search. The cylinders are packages that is
moved around during the search in order to minimize the dose-rate to the surrounding virtual

dosimeters visualized by cubes.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 50/77

3.4.8 Digital Twin integration

Parts of the decision platform is to use a digital twin to predict the values coming from the IoT devices

measuring the waste containers. This concept is demonstrated in the sensor graphs shown in the

container dashboard as future predictions are shown beyond the current time (Figure 16).

In addition, a user interface was prototyped to demonstrate how it would be possible to run different

prediction codes from the platform. Configurations can made by selecting an algorithm and its

parameters. The configuration can then be executed either once or at regular intervals. The

prediction code would fetch the latest data from the database and make the predictions. The results

would be uploaded back to the database. The results can be analysed on their own or as part of the

historical sensor values in the container dashboard.

Figure 16. Future predictions from the digital twin shown on the dashboard sensor graph.

4 Summary and conclusions

4.1 Joint showcase at UJV

The development of the different subsystems of the data management framework was done by

different project partners during the project in Task 7.5. To demonstrate the concept of Task 7.5 (and

its link to other tasks are described in this report) as a whole, a common showcase was performed.

The joint showcase demonstrates the advancements made in the project. It exemplifies the

collaborative, iterative and integrative approach of the project, weaving together various strands of

research and development. The specific technologies employed in this showcase from Task 7.5,

were detailed in Chapter 3 of this report.

In alignment with the reference packages defined in the early stages of the project [WP7 Task 7.2.2.

Reference Package and Factors Affecting Package Evolution and Degradation], selected

technologies were tested in realistic environments in two different storage configurations at NNL

(UK) and UJV (Czech Republic) using a set of mock-ups.

Task 7.6 focused on testing various technologies for the non-destructive testing of cemented

packages in a storage environment. The objective is to evaluate these technologies to identify the

most promising solutions, based on a comprehensive set of criteria defined by the end users involved

in PREDIS WP7 (ORANO, SOGIN, UJV). This assessment extends beyond traditional scientific and

technical considerations to include economic, safety, and operational factors, as well as training and

maintenance requirements. A value assessment for the different technologies will be conducted at

the project's conclusion.

The UJV demonstration (a photo of the test setup shown in Figure 17) test concentrated on validating

RFID embedded sensors, SciFi gamma monitor & SiLiF neutron monitor, and sensorized RF

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 51/77

Identification Box for radiation monitoring (Task 7.3). The primary goal is to demonstrate the

effectiveness of Non-Destructive Testing (NDT) in monitoring cemented waste packages under

actual storage conditions, thereby ensuring their long-term integrity. To this end, storage conditions

at the end-user facility were replicated by stacking 21 cemented packages (each 200 litres/500

kilograms) over a 3-month period at UJV Rez. The focus was on three key NDT methods developed

within PREDIS Task 7.3:

• Sensorized RF Identification Box for Gamma-ray and Thermal Neutron Monitoring (UniPi).

• SciFi Gamma Monitor and SiLiF Neutron Monitor (INFN).

• RFID Embedded Sensors (BAM and VTT).

The success of this test hinges on instrumented mock-up packages designed to specific reference

conditions:

• ASR Challenge with RFID Sensors: Testing RFID embedded sensor technology using Relative

Humidity, Temperature, and Pressure sensors, along with Belgoprocess aggregates, to simulate

conditions susceptible to an Alkali-Silica Reaction (ASR).

• Radioactivity Assessment with Cs-137 Source: Evaluating radioactivity using a mock-up with a

central aperture for a 167 MBq Cs-137 source, facilitating measurement around the mock-up

package and identifying anomalies or faults within cemented packages.

The commissioning of the mock-up facility was completed in October 2023. Preliminary data

collection tests were conducted locally at UJV Rez to ensure seamless integration and data

transmission to the Azure Platform. Remote troubleshooting procedures were established for any

potential issues during the 3-month testing period, which concluded in January 2024.

Further, the joint showcase produced data in the form of the metadata file specified in the Chapter

3.2.3.1 of this report, and the measured data from 3 sensors from the sensing and monitoring

systems was transferred and stored to the cloud data platform through IoT applications. The data

was processed and displayed to the end users through the decision framework. Unfortunately, at

the time of the writing of this report, the final data connection with digital twin of Task 7.4 was still

under development, but the decision framework dashboard has capabilities to display the analysis

data coming from the digital twin. The joint showcase is planned to be presented at the final seminar

of the project in June 2024.

Figure 17. Storage configuration test at UJV Rez.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 52/77

4.2 Conclusion

This section summarizes the main efforts of Task 7.5. Efficient and safe management of radioactive

waste is of utmost importance for protecting both present and future generations. Medium to long-

term storage necessitates the monitoring of waste packages for potential degradation phenomena.

Managing any arising issues prior to transport to the final repositories is crucial. To ensure the safety

of radioactive waste management, advanced monitoring systems need to be developed and put into

operation. The common aim of WP7 tasks of the PREDIS project was to develop a concept and a

prototype for a data management framework for condition monitoring system for cemented waste

handling and pre-disposal storage. The objectives of Task 7.5 (as further specified in Chapter 1) are

listed below, with the mention of which of the developed subsystems of the data management

framework tries fulfilling the goal. The main results are also briefly summarized in this chapter.

• Conceptual Model for Data Handling and Storage – Data platform (as described in

Chapter 3.2)

• Translation of NDE and Monitoring – Data management framework (as described in

Chapter 3)

• Fusion of Multi-Method Monitoring – Decision framework (as described in Chapter 3.4)

• Data Integrity Plan – Data platform (as described in Chapter 3.2)

• Database and Software Prototype – Data management framework (as described in

Chapter 3)

The overall aspects of data management oriented to waste management have been analysed,
according to the state of the art, by investigating using dedicated case studies both the possibility to
manage data the on cloud as well as on local servers and in a mix of two.

Starting from the definition of input data, which can be classified into two macrofamilies [(raw,

formatted, metadata), (time series)], and of output data, once data have been stored on cloud and/or

server (mainly queries for prediction / dashboarding), technical specifications have been developed

and different case studies set-up to verify the feasibility of the system required. Data management

for long time implies the resolution of many issues, since in the IT world any technology can become

obsolete in few years (less than 10), in particular:

• Definition of life management requirements (generation and collecting of data, storing and

managing data, using and sharing data between different EU organizations, archiving data,

destroying data)

• Definition of reference databases trade-off analysis by considering that at least two different

technologies one for metadata: SQL (Microsoft SQL, PostgreSQL, SQLite 3) and one for

real time series / formatted data: NoSQL (MongoDB, RavenDB, Cassandra, BigTable,

CouchDB; SQLite 3, Apache Arrow Flight SQL)

• Definition of API specification (I/O string data format: JSON, Plugins: Python scripts).

In the frame of this project a reference data-management platform (open source) has been

developed by considering that:

A) users shall be able to operate in parallel on cloud systems (MS Azure, AWS) by using

virtual machines and containers, on local servers (Linux based) as well as on operator

workstations (Windows 10/11 based)

B) Waste can be moved from one building to another in the same facility as well as to different

sites and even different countries inside the EU.

On any IT platform named in A), Miniconda (a small bootstrap version of Anaconda that includes

only conda, Python, the packages they both depend on, and a small number of other useful packages

like pip, zlib, and a few others) can be installed. In this environment the two Python REST API

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 53/77

Frameworks (Django and Pandas) in the associated virtual environment in Conda have been used

for metadata (Django) and time series management (Pandas). Real time data (measure results) can

be acquired both in real time and/or offline by InfluxDB (version Cloud (commercial) or Edge (open

source)) and managed locally by Graphana based interfaces or queried/moved inside/outside the

influxDB framework to be used in other APIs for prediction and/or decision framework (on PCs or

directly on MS Azure).

Machine learning and advanced signal processing methods were identified to be more in the focus

of the digital twin development of PREDIS Task 7.4, and they didn’t have a strong presence in this

task. Azure cloud computing environment was tested to be suitable for performing these operations,

and simple trials were done with Azure AI studio. More focus was needed on the other parts of the

data-driven workflow: data collection, integration of the data management framework subsystems,

and administration of the different development platforms.

There are many options for modelling data. The possible use of ontologies in the context of the

PREDIS project is described in Chapter 2.3. Potential benefits of ontologies, such as information

integration, compatibility, and shared terminology, have also been described and considered.

Data preprocessing is presented in Chapter 3.3.1. There are many types of preprocessing methods

for different purposes. Data integration, data cleaning, time series data handling, handling time-

dependent sequences, labelling, data transformation were presented in this report. In addition,

software libraries intended for data processing were briefly presented and compared. Here, we

focused only on libraries intended for data processing of the Python programming language.

The data management framework was implemented in Azure. Automatic setup and management of

this using scripts and ARM templates is presented in Chapter 3.3.2. Several advantages achieved

by using scripts and ARM templates were presented. In addition, a list of steps with which a partially

corresponding system can be deployed was compiled.

As part of the decision framework initiative, a prototype for a decision platform was designed and

implemented as a web application. This platform incorporated multiple dashboards, each tailored to

present information from distinct perspectives, tailored to the specific needs of various users. Users

can access 3D analysis views that facilitate the visualization of both waste storage sites and

containers. Furthermore, the decision platform offers OLAP analysis of radioactive waste and dose

analysis reports (ALARA based planning or briefing option). Additionally, the platform goes beyond

presenting only the current situation by showcasing future predictions derived from a digital twin,

which can be conveniently viewed on a dashboard. This comprehensive approach ensures that the

decision platform not only addresses immediate needs but also provides valuable insights for long-

term planning and management.

A conceptual model for data handling and storage has been developed, and a practical

implementation has been performed. The demonstration test at UJV confirmed that monitoring data

from sensors can be automatically uploaded to the Microsoft Azure cloud platform, and it can be

visualized on the decision platform. To ensure traceability, the associated metadata can also be

stored, and connected with the monitoring data. A web-based decision platform with multiple

dashboards has been developed to present information from different perspectives customized to

different users. The functionality of the decision platform has been proven in the UJV demonstration

test. Predictive numerical models of the digital twin can be integrated into the platform to further

support decision-making.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 54/77

REFERENCES

Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., & Jayakumar, T. 2013. Infrared Physics &

Technology Infrared thermography for condition monitoring – A review. Infrared Physics and Technology, 60,

35–55. https://doi.org/10.1016/j.infrared.2013.03.006

Davies, A. 1998. Condition Monitoring Handbook of Condition Monitoring. SPRINGER-SCIENCE+BUSINESS

MEDIA, B.V.

Gholizadeh, S., Leman, Z., & Baharudin, B. T. H. T. 2015. A review of the application of acoustic emission

technique in engineering. 54(6), 1075–1095.

Hee-Seoung Park et al. (2022) A detailed design for a radioactive waste safety management system using

ICT technologies https://doi.org/10.1016/j.pnucene.2022.104251

ISO 13374-1, 2003. Condition monitoring and diagnostics of machines — Data processing, communication

and presentation — PART 1: General Guidelines. First ed.

ISO 13374-2, 2008. Condition monitoring and diagnostics of machines — Data processing, communication

and presentation — PART 2: Data processing, Corrected version. First ed.

ISO 14830-1:2019. Condition monitoring and diagnostics of machine systems — Tribology-based monitoring

and diagnostics — Part 1: General requirements and guideline. First ed.

ISO 17359:2019. Condition monitoring and diagnostics of machines — General guidelines. Second ed.

ISO 18434-1:2008. Condition monitoring and diagnostics of machines — Thermography — Part 1: General

procedures. First ed.

Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). “A review on machinery diagnostics and prognostics

implementing condition-based maintenance.” Mechanical Systems and Signal Processing, 20(7), 1483-1510

Kolditz, O. et al., 2023 Digitalisation for nuclear waste management: predisposal and disposal, Environmental

Earth Sciences (2023) 82:42 https://doi.org/10.1007/s12665-022-10675-4

Mathew, A.D., Zhang, L., Zhang, S., Ma, L., 2006. A review of the MIMOSA OSA-EAI database for condition

monitoring systems, in: Proceedings World Congress on Engineering Asset Management. Gold Coast,

Australia. https://doi.org/10.1007/978-1-84628-814-2_88

MIMOSA, URL https://www.mimosa.org/what-is-mimosa/ (accessed 10 Mar 2023).

Mohanty, A. R., (2015). Machinery Condition Monitoring: Principles and Practices. Boca Raton: CRC Press.

OM – Ontology of units of Measure, 2017, https://github.com/HajoRijgersberg/OM (accessed 25 Jan 2024)

PREDIS Deliverable 7.1 State of The Art in packaging, storage, and monitoring of cemented wastes 2021-04-

14 version 1.1

PREDIS Work Package 7 Milestone MS53 – M7.5 – Month 36 Internal Report “Prototypes ready for

demonstration in real environments”

PROV-O: The PROV Ontology, 2013, https://www.w3.org/TR/prov-o/ (accessed 25 Jan 2024)

Randall, R. B. (2011). Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive

Applications. Wiley.

Rao, B. K. N. (1996). Handbook of Condition Monitoring: Techniques and Methodology. Elsevier.

Réka Szőke, Ernst Niederleithinger et al., (2023) Predisposal Management of Radioactive Waste: Digital

Decision Support System, WM23 23237 Full length paper.

Semantic Sensor Network Ontology, 2017, https://www.w3.org/TR/vocab-ssn/ (accessed 25 Jan 2024)

Waqas Ashraf, 2018. A model to assess and customize computerized maintenance management systems

complies with industry 4.0 vision and requirements: A case study in food processing plant. University of

Stavanger, Stavanger.

https://doi.org/10.1016/j.infrared.2013.03.006
https://doi.org/10.1016/j.pnucene.2022.104251
https://doi.org/10.1007/s12665-022-10675-4
https://doi.org/10.1007/978-1-84628-814-2_88
https://github.com/HajoRijgersberg/OM
https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/vocab-ssn/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 55/77

Appendix 1: Data platform case studies and experiences

This appendix contains freeform descriptions of the case studies done during the data platform

development by ANN. They are included for information and possibility to share some of the

experiences gained during the project. They are hopefully helpful for someone interested in

developing similar systems.

Case Studies

Case studies have different objectives:

a) Analyse as metadata can be managed

b) Analyse as time series can be managed

c) Verifying the coupling between metadata and time series.

The investigation should involve different approaches and it should be closed to the real situation: in particular,

a data pipeline should be organized between sensors and databases to highlight the bottlenecks.

Currently the following investigations have been performed:

a) Use of “MS Azure Data Lake” Storage to save data on the long-term “on Cloud”

b) Use of Django as open-source tool to create a platform to manage metadata and HMI

c) Use of SQLite 3.0 as reference open-source database (alternative is PostgreSQL if multi-

access IP is required)

d) Use of MS Azure IOT Central to manage time series data acquisition in an IoT environment

e) Use of InfluxDB to manage time series in a multi-database (i.e. buckets) structure.

Python has been defined as reference programming language.

Time Series Management

In Subtask 7.5.1, case studies have been planned in two different phases and with different

objectives:

1. in a first phase data flow generation are simulated by using devices not strictly related to

Task 7.3 (STM Microelectronics ROS node and ESP32)

2. in a second phase data flow generation is coming from Task 7.3 developed instrumentation.

Some constrains (i.e., preliminary design choices/assumptions) have been fixed in this research

frame:

a. Data management can be allowed both on local server and on cloud

b. The waste package in only constituted of a basic unit (i.e., drum)

c. Sensor and waste package are independent unit until they are permanent associated

d. For “Time Series” final user (i.e., Subtask 7.5.3) can perform only queries on waste package

(i.e., drum)

In details:

• Basic Units have to be loaded on SQL database with at least the following information:

o a set of metadata (a tag/barcode, the waste characterization after curing, ...)

o the planned periodic verification plan

o the associated blockchain string to track the waste history (if any)

• Sensors are to be loaded on SQL database with:

o a set of metadata (tag, type of measure, calibration certificate, calibration expiring)

o indication if they are inside/or outside a waste package

o the basic units ID for which the measure is significative

• “Sensor-node/ DAU” are to be loaded on the database with

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 56/77

o The sensors which are referring to,

o The firmware release

o The communication protocol and/or data format

o The calibration certificates tracking information

Users can perform queries on database by considering:

• The reference object for DB Query is the Waste Package

• For a basic unit (i.e., drum) it shall be possible to query for:

o The drum history

o The associated measures

o The associated predictions

o The periodic verification plan

o The tracked changes

MS AZURE as Data storage on Cloud

Large-scale data warehousing and analytics involves two key elements, data ingestion and data

processing.

Data ingestion is the process used to load data from various sources into a central data store.

Data can be ingested using batch processing or streaming, depending on the nature of the data

source.

Data processing involves operations on the data to clean, filter, restructure, and prepare the data for

analysis.

MS AZURE allows a pipeline based on

• Input data is mixture of relational and non-relational data from many different sources,

batched or streamed

• Data is ingested from various sources with Azure Data Factory to Azure Data Lake on top of

Azure Blob Storage

• Hierarchical Container structure (with a template) is build inside Storage to build logical

segments of data

• Containers are accessed by other Azure services such as Azure Synapse Analytics, Azure

Analysis Services and Azure Machine Learning Studio to process and visualize

Azure Data Factory is a data ingestion and transformation service that allows loading raw data from

many different sources, both on-premises and in the cloud.

As it ingests the data, Data Factory can clean, transform, and restructure the data, before loading it

into a repository such as a data warehouse.

Work performed by Azure Data Factory as a pipeline of operations

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 57/77

Figure A1.1. Azure Data Factory

Data Lake Store provides a file system that can store near limitless quantities of data. It uses a

hierarchical organization (like the Windows and Linux file systems), but can hold massive amounts

of raw data (blobs) and structured data

1. hierarchical directory structure needs to be configured:

{Partner}/{Source(/Plant)}/{Sensor/Dataset}/{yyyy}/{mm}/{dd}/ (?)

2. Enables granular Role-Based Access Control (RBAC)

3. Compatible with the Apache Hadoop

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 58/77

Figure A1.2. MS Azure Schemes

On the basis of above VTT’s has opened a Azure Subscription for the project

1. BA4_124983-1.7.5_EU_PREDIS_WP7.5 (63d-c370-4c52-9f92-e1a831905fc1)

2. VTT works as admin + we have to follow VTT’s governance rules

• Project partners can be invited to use this subscription

3. Work emails only

4. Similar authentication as VTT’s Teams site

5. Role-based-access rights (Owner / Contributor / Reader) on service level

• Everything for the project can be done on Azure under this subscription

6. All costs will be billed monthly by VTT IT from the project

MS Azure Container is characterized by:

a. Access Control Policy (IAM)

b. Shared Access Token in order to give the possibility to the world outside to access to the

container in order to store data or read data without accessing to the subscription and/or

directly to the MS Azure portal

c. Manage Access Control List (ACL)

d. Define an access policy (i.e. who can access to the container from outside)

e. Properties related to an URL (i.e.

https://euwdatahandlingstorage01.blob.core.windows.net/ansaldo)

f. Extract metadata.

g. Possibility to upload wildly files by connecting to the subscription

MS AZURE Central as Reference IOT platform

One possibility to manage on cloud data is to use MS Azure Central IoT.

Azure IoT Central preassembles platform as a service (PaaS):

• Allow quick connectivity between IoT devices and the cloud

• Centralized management to easily reconfigure and update devices

• Visualize and analyse IoT data, from the big picture to small details, by “Data Explore” and

“Dashboard” function

• Bridge business applications and IoT data:

• Create “jobs” (define schedule processes by including different devices)

• Define “rules” to monitor single devices at scheduled time and trigger “actions”

https://euwdatahandlingstorage01.blob.core.windows.net/ansaldo

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 59/77

• Export or send filtered data through the Cloud versus other platforms (i.e. Azure Data Lake).

Devices connected to IoT Azure are suggested to implement AZURE RTOS, which is under

development by looking SIL4 applications. Starting from end 2021 MS Azure has started:

1. to certify industrial devices in order to allow “secure” and “blinded” connection according to

the AZURE standards

2. to signing collaboration contracts with different industries as partner (i.e., Renesas

Electronics Corporation, STM microelectronics, NXP Semiconductors N.V) in order to

develop dedicated RTOS implementation to be (later on) certified. A wide catalogue of

components connectable to IoT Central is already present on web (see

https://devicecatalog.azure.com/featured)

Figure A1.3. Definition of Resource on MS Azure IoT Central.

Figure A1.4. Attach devices at your MS Azure IOT Central resource (254 devices allowed).

In order to simulate 24 hours on 24 hours the measuring data associated to a single drum, data

which should come from 7.3 in the next phase of project, ANN prepared a case study where:

https://devicecatalog.azure.com/featured

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 60/77

• Input data are generated by using a last generation (2022) STM developing board as DAU

(STM32U5 not commercial version) with the firmware programmable with MS RT OS

(“Microsoft Real Time OS) able to generate a continuous flow of data versus MS Azure IoT

Central platform according to the MS Azure security protocols.

• The reference measures to manage (by using on-board sensors) have been set in

o Three scalar variables: temperature, pressure, humidity,

o Two vectorial variables Vectorial: acceleration, magnetic field

• Measured data are acquired (via MQTT) in Real Time at a fixed frequency on a IoT dedicated

cloud application (i.e. https://mem4predis01.azureiotcentral.com)

• The MS azure IoT application works a self-standing dashboard (up to 1e6 sensors can be

connected at same time), but data can be queried locally and query procedure can also

generate alarms on selected criteria: in the present case if the temperature is above an

threshold value the whole string is exported in a «self-explaining» string in JSON format

outside MS azure domain, in particular in VTT MS Azure BLOB Container named “Ansaldo”

(i.e. MS Azure Data Lake).

• On VTT BLOB Container a list of string is archived and they can be retrieved and manage

independently by the application which originates the data.

Each organization can create independently an application under Azure IoT Central and decide if

other organizations can access or not.

Communication from local instruments or server requires authorized «nodes» in order to exchange

data in accordance with Microsoft security protocols.

Each R&D organization can (or ask to) define a Container (and the subdirectories) in the VTT Data

Lake DB

Create a pipeline between Azure IoT Central and an Azure Container by addressing the URL (i.e.

https://euwdatahandlingstorage01.blob.core.windows.net/ansaldo) in the IoT Central application.

Export automatically selected data from IoT Central by defining «Alarm» Criteria

Figure A1.5. Case Study – STM ARM Cortex-M33 processor developing board with an ultra-low-
power microprocessor (not commercial).

https://mem4predis01.azureiotcentral.com/
https://euwdatahandlingstorage01.blob.core.windows.net/ansaldo
https://euwdatahandlingstorage01.blob.core.windows.net/ansaldo

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 61/77

Figure A1.6. Case Study – Data Flow Simulation on MS Azure Central IoT Platform.

Figure A1.7. Case Study – Data Exploring on MS Azure IoT Central Platform.

Figure A1.8. Azure Event Tracking – A Typical JSON format.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 62/77

Data to be Managed in the Case Study

Data to be managed in the case study are Metadata & Time Series Data, which are two sets of

different type of data to be managed with different requirements.

Requirements includes use of IT open-source SW platform with some main constraints

• All SW packages (used for developing) should be consistent with a potential migration on

Cloud (AZURE, AWS)

• Sensors and DAU developed in Task 7.3 providing input data from field should be compliant

with Industry 4.0 & IoT application (STM Node, ESP32, LORA, ...)

• Language to write down scripts compliant with current way to proceed (i.e., Python, Node.JS,

React, Arduino, ...)

• Databases to manage both meta-data and raw-data should be consistent (i.e., SQLite3,

PostgreSQL, MariaDB, etc)

Technical choices preliminary selected to manage data are:

• Real Time Series:

o InfluxDB (www.influxDB.com) as reference tool by including associated graphics

o Three Buckets (i.e., databases) taken as reference with different purposes: manage

sensors, manage waste package

• Meta-Data:

o Relational Database supported from InfluxDB (i.e., PostgreSQL

https://www.python.org/ and/or SQLite 3 https://www.sqlite.org/index.html (InfluxDB

Enterprise))

o JSON schemas as reference to read and write data automatically from/to the data-

base involved

o Miniconda3.0 (see https://docs.conda.io/en/latest/miniconda.html) to create virtual

environment where run:

▪ Python (see https://www.python.org/ security version 3.9 or 3.10) the

reference programming language for all modules to write.

▪ Django (http://www.djangoproject.com/) to a create a full-standing working

platform by including HMI

SQL Databases for Metadata

Three big independent data families need to be managed:

• WastePackage (i.e., “Concrete Drum” in WP 7)

• Sensor Data Acquisition Unit (i.e., Detector & Monitor)

• RAW data (i.e., images from muon tomography and other big files to be linked)

Two different techniques area possible to manage metadata

a) Model –View-Controller (MVC)

b) Model – View –Template (MVT) used in Django (https://www.djangoproject.com/)

http://www.influxdb.com/
https://www.python.org/
https://www.sqlite.org/index.html
https://docs.conda.io/en/latest/miniconda.html
https://www.python.org/
http://www.djangoproject.com/
https://www.djangoproject.com/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 63/77

Figure A1.9. Modelling and managing metadata.

In MVC:

• A model provides the interface for the data stored in the Database. It is responsible for

maintaining the data and handling the logical data structure for the entire web application

• A view is a user interface. It is responsible for displaying Model data to the user and also to

take up information from the user. Views in MVC is not the same as the Views in Django

• A controller is responsible for the entire logic behind the web application. That is when the

user uses a view and raises an Http request, the controller sees the user request and send

back the appropriate response.

In MVT:

• A model, as in MVC, provides the interface for the data stored in the Database.

• Like views in MVC, Django uses templates in its framework. Templates are responsible for

the entire User Interface completely. It handles all the static parts of the webpage along with

the HTML, which the users visiting the webpage will perceive. Templates are written in

Django Template Language, a simplified version of HTML.

• View acts as a link between the Model and the Templates by creating a bridge: it sees the

user request, retrieves appropriate data from the database, then renders back the template

along with retrieved data.

In Django MVT architecture there is not a separate controller as in MVC and everything is based on

MVT.

The advantages are:

1. The user sends a URL request for a resource to Django.

2. Django framework then searches for the URL resource.

3. If the URL path links up to a View, then that particular View is called.

4. The View will then interact with the Model and retrieve the appropriate data from the

database.

5. The View then renders back an appropriate template along with the retrieved data to the

user.

Django models are classes that represent a table or collection in our Database.

Each model contains all the information regarding the table.

These models are stored together in Django in a file models.py in the Django App.

There can be many different models for different DB containing different information like User DB,

Book DB, or any other table required by the web application.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 64/77

Django officially supports the following databases: PostgreSQL, MariaDB, MySQL, Oracle, SQLite

(default). The main limitation of SQLite 3 is that it cannot be addressed by a full IP address but only

with a network local IP address (AAA.X.Y.Z) where AAA is fixed for all users. For a full network

access PostgreSQL is suggested as alternative.

In this case study, InfluxDB task will be created to transfer data from a Django endpoint to an

InfluxDB bucket.

The working environment can be setup any PC or workstation or VM on the cloud by following some

elementary instructions:

• Install Conda/Miniconda on your PC/WK/VM:

https://docs.conda.io/en/latest/miniconda.html

• Install Python 3.10 or 3.11 within miniconda (or upgrade it);

• Install Node.js

• Create a virtual environment where install Django (i.e., predis)

• Install all needed libraries for the project by “requirements.txt”

• Install pillow (py imaging) and whitenoise (WSGI app)

• Run Django MVT project server (or copy the demo)

• Access webserver page (if local 127.0.0.1:8000)

The reference database is a SQLite data-base (SQLite 3 .0 or above), characterized by

• Manifest typing and BLOB support.

• Support for both UTF-8 and UTF-16 text.

• User-defined text collating sequences

• 64-bit ROWIDs (no practical physical limit to the number of rows)

• Max Size: 281 Terabyte

• Max single table size (“model” in Django, “measurement” in InfluxDB): 2GB

• Accessible in Query and Write mode by Flux v 0.x (InfluxDB)

• Data Migration in PostgreSQL (server on cloud application)

In the case study Django apps defined currently are:

• wastepack (meta-data associated to waste-packages)

• sensor (meta-data associated to sensor)

• images (meta-data associated to images)

To each Django app is associated a “model” (i.e., a table in the SQLite database).

Four reference directories (“predis01”, “productionfiles”, “mystaticfiles”, “pics”) are directories to

manage the server, html and css files.

In the model files (see examples)

• Class = name of the table in SQLite 3.0

• Class member list = name of the columns in the named table

• Class member list shall contain “TAG” and “Field ID” used in InfluxDB

Besides Dynamic cross link with JSON schema can be performed by Django FRAME restwork (to

investigate/perform).

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 65/77

GitHub Predis-h2020 information processed with «JsonSchema2Django.Py» to check inconsistency

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 66/77

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 67/77

Django can be run in administration mode:

Django can be run in viewer mode:

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 68/77

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 69/77

InfluxDB as NoSQL reference database

To manage time series the reference tool is influxDB (www.influxDB.com)

Three different implementations of InfluxDB are available:

1. OSS.X (Client and Server are on your local computer or on your VM in the Cloud)

2. On Cloud: Buckets are stored on InfluxDB rent server WWW (Azure in UE, AWS in UK and

USA, …)

3. Enterprise for Professional Services (Many Organization Interacting) on Cloud (fee on project

size – no limits in bucket size)

Different InfluxDB versions are available on web to be downloaded, with difference performances

and limits.

InfluxData Inc’ Objective (USA Company – Headquarter in San Francisco, CA) is to do simple and

«cheap» what it is costly on MS AZURE and AWS for the services related to the VM and networking

services.

In Europe, InfluxDB on Cloud is accessible through (under MS Azure Platform in Netherland)

https://europe-west1-1.gcp.cloud2.influxdata.com/orgs/aa8059aa9f79edb5

User can register (for free) by Google or Microsoft personal account and have one Bucket (i.e.,

database) to start a personal project with drastic limitation on the total number of bucket and data

retention (limited to 30 days) as well as API and integrated dashboards.

User can also register for a local Client version OSS.X downloaded on his PC.

In PREDIS Task 7.5 project, VTT had defined a VM on MS Azure with an OSS.X version installed

(version 2.3) at http://20.160.36.135:8086/

Time series data management requirements are:

• Data are immutable

• Writing in append

• Reading contiguous sequence of samples data.

• Highly compressible data.

• Deleting usually across large time period

• High precision for short period of time

• Single value is not so important (i.e., not critical)

In order to manage them, two roads are possible:

a) Use a pseudo commercial tool as InfluxDB, which allows 4 Steps in One for Data

Management (Acquire, Enrich, Operate, Analyze)

b) Combine a set of services:

a. NotOnlySQL DB (i.e., MongoDB, SQLite3)

b. Graphical Tools as Graphana, CSS Studio

c. Additional services on Clouds (Azure, Google, AWS) to run scripts to transfer data.

When a project is set-up, the user shall consider:

• In OSS.X InfluxDB (the version installed by VTT on MS Azure VM), all buckets (i.e.,

databases related to the project) shall belong to the same “Organization”

• In Cloud InfluxDB: User pays a fee for the number of buckets used (4 payloads); in the

Enterprise option there are not limits: in any case 1 or 2 buckets are free to set-up the case.

Access to the buckets by different members is governed by the administrator of the main

organization, which had open the account.

Acquire time series data from Subtask 7.5.3 is not different from acquire data in the frame of Industry

4.0 IoT telemetry since any event is characterized by a timestamp.

http://www.influxdb.com/
https://europe-west1-1.gcp.cloud2.influxdata.com/orgs/aa8059aa9f79edb5
http://20.160.36.135:8086/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 70/77

Analysis of IoT application shows two architectural patterns as dominant:

• Hub only

• Edge and hub

Hub-only IoT data architectures are where each of “things” send their IoT telemetry to a central time

series database (such as InfluxDB Cloud version) for storage, enrichment and analysis.

All devices are assumed to have a reliable, performant Internet connection to send their IoT

telemetry, and thus all consumers of that data access it from that centralized database.

Edge and hub data architectures are required when a piece of equipment doesn’t have a network

connection that is fast and reliable, and where people are onsite and require access to the analytics

to assist in operational decision making, while centralized visibility across all of the potential edge

sites can be leveraged to understand trend analysis, operational efficiencies or identify potential

issues.

It makes sense to dual-write time series telemetry to an onsite time series database, as well as to a

centralized instance.

The edge-and-hub pattern is a InfluxDB schema to fulfil:

• Take measures on field with a local hub

• Send selected data remotely (also offline is connection does not work) to a common control

room

• Perform analysis of predictive maintenance and send back the results

The investigated strategy to acquire data from the field started by defining two different basic

buckets:

1) One strictly to the acquire data from the sensor independently from they are

2) One related to the waste-package as described in the SQL database where sensors are

associated and measure flow from “sensor” bucket by dynamic queries.

With the same logic, other buckets can be defined (i.e., to collect data from simulation and/or from

prediction)

Figure A1.10. InfluxDB Data Flow Management Schema.

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 71/77

InfluxDB can read SQL databases from many sources:

• Amazon RDS: https://aws.amazon.com/

• CockroachDB: https://www.cockroachlabs.com/

• BiqQuery: https://cloud.google.com/bigquery

• MariaDB: https://mariadb.org/

• MySQL: https://www.mysql.com/it/

• Percona: https://www.percona.com/

• PostgreSQL: https://www.postgresql.org/

• SAP HANA: https://www.sap.com/italy/products/technology-platform/hana.html

• Snowflake: https://www.snowflake.com/it/

• SQLite: https://www.sqlite.org/index.html

• Vertica: https://www.vertica.com/

In these case studies, interface is limited to SQLite 3 and PostgreSQL.

Modules to perform I/O data management (API)

Acquiring data in influxDB buckets can be performed by Application Programming Interface (API).

Two options are possible:

1. By a Data Acquisition Streaming or Pipeline:

a. Telegraf Agent (Telegraf service shall run on your PC at boot)

b. Arduino Client Libraries

c. Native Integrations (Apache NI)

2. Off Line Data Acquisition, which implies

a. CSV format with headers describing the structure of file compliant with InfluxDB

requirements: a “Field” and a “TimeStamp” shall be always present.

b. Use On line protocol Commands (strongly suggested design choice)

Telegraph agent includes many industrial plugins (OPC UA, Modbus, KNX, ExecD, MQTT, …).

The more efficient way to proceed is to implement directly the communication inside the DAU (or

sensor node) Firmware. A native set of instructions are proposed on web:

• OPCUA: https://www.influxdata.com/integration/opcua/

• MODBUS: https://www.influxdata.com/blog/how-to-monitor-your-modbus-devices-with-

influxdb/

• KNX:

https://github.com/influxdata/telegraf/tree/1eb47e245c0c22270aaf9a42938f5f5f6697a959/pl

ugins/inputs/knx_listener (not validated)

• MQTT: https://www.influxdata.com/mqtt/

• AMQP:https://www.influxdata.com/integration/amqp/

• AZURE Event HUB: https://github.com/influxdata/telegraf/blob/release-

1.18/plugins/inputs/eventhub_consumer/README.md (not validated)

• RTI DDS: https://www.rti.com/developers/rti-labs/telegraf-plugin-for-connext (external

organization for fee)

• Native Support Apache NiFi, openHAB, WinCC, Node-RED, Particle.io, Arduino (including

ESP32, LoRA)

https://aws.amazon.com/
https://www.cockroachlabs.com/
https://cloud.google.com/bigquery
https://mariadb.org/
https://www.mysql.com/it/
https://www.percona.com/
https://www.postgresql.org/
https://www.sap.com/italy/products/technology-platform/hana.html
https://www.snowflake.com/it/
https://www.sqlite.org/index.html
https://www.vertica.com/
https://www.influxdata.com/integration/opcua/
https://www.influxdata.com/blog/how-to-monitor-your-modbus-devices-with-influxdb/
https://www.influxdata.com/blog/how-to-monitor-your-modbus-devices-with-influxdb/
https://github.com/influxdata/telegraf/tree/1eb47e245c0c22270aaf9a42938f5f5f6697a959/plugins/inputs/knx_listener
https://github.com/influxdata/telegraf/tree/1eb47e245c0c22270aaf9a42938f5f5f6697a959/plugins/inputs/knx_listener
https://github.com/influxdata/telegraf/tree/1eb47e245c0c22270aaf9a42938f5f5f6697a959/plugins/inputs/knx_listener
https://www.influxdata.com/mqtt/
https://www.influxdata.com/integration/amqp/
https://www.influxdata.com/integration/amqp/
https://github.com/influxdata/telegraf/blob/release-1.18/plugins/inputs/eventhub_consumer/README.md
https://github.com/influxdata/telegraf/blob/release-1.18/plugins/inputs/eventhub_consumer/README.md
https://www.rti.com/developers/rti-labs/telegraf-plugin-for-connext
https://www.influxdata.com/blog/building-a-data-stream-for-iot-with-nifi-and-influxdb/
https://www.influxdata.com/blog/building-a-data-stream-for-iot-with-nifi-and-influxdb/
https://www.openhab.org/addons/persistence/influxdb/
https://kaasm.com/digital-platforms/influxdb-parallel-data-logging-with-wincc-oa-nextgen-archiver/
https://flows.nodered.org/node/node-red-contrib-influxdb
https://www.influxdata.com/blog/integrating-particle-io-with-influxdb-cloud/
https://randomnerdtutorials.com/
https://randomnerdtutorials.com/
https://randomnerdtutorials.com/
https://randomnerdtutorials.com/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 72/77

Testing the Real Time Acquisition Schema

A preliminary set-up has been defined on influxDB VM by creating two buckets: SensorNode and

WastePackage

In order to generate a real time data pipeline with influxDB, a silicon detector have been connected

to an ESP32 device configured to exchange data with a router by WiFi in order to be routed on Cloud

by respecting the security rules required by Microsoft on Azure and/or influxDB organization (which

in Europe is using MS Azure as reference cloud platform).

In particular, ESP32 WROOM 32 is configurated as a Station and the Access Point is the router:

The basic information inserted in the firmware by Arduino (version 2.0) to connect to MS Azure are:

Gamma Silicon Sensor's Interface

 * Combination with the built-in Wire library to interface.

 * ESP32 analog input 22 - I2C SCL

 * Esp32 analog input 21 - I2C SDA

#include <WiFi.h>

// #include <WiFiMulti.h> / need if device is an AP

// be aware esp_arduino_version.h need to be copied manually in influxdb library

#include <InfluxDbClient.h>

#include <InfluxDbCloud.h> // only to manage cloud certificates

#define DEVICE "MEM001_ESP32_GAMMA_DR"

// sensors connected to the device

#define PNUMBER "GDK101_A_001"

// Router where ESP32 Station shall be connected

// WiFi AP SSID

#define WIFI_SSID "H3140-37792945"

// WiFi AP password

#define WIFI_PASSWORD xxxxxxxxxx

The above strings are needed to check the secure connection on Cloud side.

// InfluxDB Cloud services data for RT connection

// InfluxDB v2 server url, e.g. https://eu-central-1-1.aws.cloud2.influxdata.com (Use: InfluxDB UI -> Load Data ->

Client Libraries)

#define INFLUXDB_URL "http://20.160.36.135:8086"

// InfluxDB v2 server or cloud API token (Use: InfluxDB UI -> Data -> API Tokens -> <select token>)

#define INFLUXDB_TOKEN "ySjcsTDpAOavkgUwPVVrouUfeljTaYZyjq509gpp0Nq_b9AgZlYNfTakOXwW8u3-

_kMIP7hGm5RAf1biCvjKVA=="

// InfluxDB v2 organization id (Use: InfluxDB UI -> User -> About -> Common Ids)

#define INFLUXDB_ORG "VTT"

// InfluxDB v2 bucket name (Use: InfluxDB UI -> Data -> Buckets)

#define INFLUXDB_BUCKET "SensorsNodesStatus«

……follows instructions to define parameters of your sensor-nodes....

Specific token shall be generated for each bucket to open connection.

If https option is used, security option shall be disabled or remote programmed.

// Set timezone string according to https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

// Central Europe: "CET-1CEST,M3.5.0,M10.5.0/3"

#define TZ_INFO "CET-1CEST,M3.5.0,M10.5.0/3" // InfluxDB mandatory

https://eu-central-1-1.aws.cloud2.influxdata.com/
http://20.160.36.135:8086/
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 73/77

// InfluxDB client instance with preconfigured InfluxCloud certificate

InfluxDBClient client(INFLUXDB_URL, INFLUXDB_ORG, INFLUXDB_BUCKET, INFLUXDB_TOKEN,

InfluxDbCloud2CACert);

// Data point to be transferred to InfluxDB (definition of measurements inside the bucket)

Point sensor("dose_rate");

In void setup ()

//Add tags for iInfluxDB Bucket

 sensor.addTag("device", DEVICE);

 sensor.addTag("SSID", WiFi.SSID());

 sensor.addTag("P/N", PNUMBER);

 // Accurate time is necessary for certificate validation and writing in batches

 // For the fastest time sync find NTP servers in your area: https://www.pool.ntp.org/zone/

 // Syncing progress and the time will be printed to Serial.

 timeSync(TZ_INFO, "pool.ntp.org", "time.nis.gov");

….. follows instruction to set-up your sensor node.....

// Check connection with server where InfluxDB is installed

 if (client.validateConnection()) {

 Serial.print("Connected to InfluxDB: ");

 Serial.println(client.getServerUrl());

 } else {

 Serial.print("InfluxDB connection failed: ");

 Serial.println(client.getLastErrorMessage());

 }

…

In void loop ()

...write first the instructions to get the measure (in this case average DR last minute and over 10 minutes)

// Clear fields for reusing the point. Tags will remain untouched

 sensor.clearFields();

 sensor.addField("DR_1m", value1m);

 sensor.addField("DR_10m", value10m);

 // Store RSSI value into point (it indicates local connection status)

 // Report RSSI of currently connected network

 // RSSI is considered a Field (i.e. data to be measured)

 sensor.addField("rssi", WiFi.RSSI());

 // Print what are we exactly writing

 Serial.print("Writing: ");

 Serial.println(sensor.toLineProtocol());

…put instruction to clean local memory of your sensor-node or restart the loop...

The above strings define what is transferred in the bucket SensorNode by including the effective

connection check to prevent from hacker attack.

https://www.pool.ntp.org/zone/

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 74/77

Figure A1.11. Silicon detector plus ESP32 node.

Figure A1.12. Real Time Data Acquisition by InfluxDB data explorer.

Data can also be retrieved and transferred to influxDB from other IoT platform or sources (i.e., AWS
and MS Azure). In particular:

• InfluxDB OSS.X can acquire data from AWS IoT applications only if data are previously saved

in a PostgreSQL Database

• InfluxDB OSS.X can acquire data stored on MS Azure in two different ways:

o If data are saved in “DataStorage Blob Container” only data are in .CSV format: JSON

files needed to be converted by using dedicated services or downloaded by AZCopy

in PC/VM by the Storage Account Administrator Only

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 75/77

Figure A1.13. Screenshot of PREDIS project containers in MS Azure.

o If data are real time data saved on IoT Central, it is required that data are exported

and saved on MS Azure Event HUB able to ingest large quantities of data

(https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about). This MS

service is oriented and sized to acquire Big Data

Figure A1.14. Screenshot of Data Explorer service on MS IoT Azure Central.

https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 76/77

Potential Communication Schema in Data Handling

A general data communication schema has been setup by dedicated scripts.

•Miniconda 3 is the reference VM where create inside a Python 3.11 environment

•Working Test: Windows 10 / 11 Professional on Local WK

•Python virtual environment (venv) shall be set for any application (i.e., one for pandas (influxdb 3.0), one for

pandas (influxdb 2.x), one for Django (Sqlite 3.0 database) to avoid library conflict)

•The following module shall be installed for data management (up to now):

•InfluxDB 3.0 or EDGE (using SQL): “pandas”, “datafusion”, “pyarrow”, “parquet”, “tabulate”, “matplotlib”,

“influxdb3-python”

•InfluxDB 2.x OSS (using Flux): “pandas”, “datafusion”, “tabulate”, “matplotlib”, “influxdb-client-python

Two buckets (real time databases) have been defined in InfluxDB: “SensorsNodeStatus” which acquire

measure and instrument status from field and “WastePackage” where sensors and measure are

associated to the concrete drum in real time by reading part of the information from the SQLite3

database (association between sensors and drums) and from the “SensorsNodeStatus”

Procedure:

1.Access to «SensorsNodeStatus» database by using «token» released by organization A

2.Perform two queries on a selected time frame:

•One as table to see the raw data and influxdb schema (for debug)

•One oriented to create directly a pandas dataframe (to manipulate)

3.Check the pandas data frame by eliminating dirty raw («NaN») in cell to transfer

4.Drop the columns from pandas data frame if they are not to be transferred to «WastePackage» influxdb

database (i.e. communication line data as SSD, rssi)

5.Check by plotting the data are you going to transfer (optional by matplotlib functions)

6.Read the «metadata» associated to «device» in SQLite3 database (managed by Django) to use as TAG in

«WastePackage» (script is on going)

7.Add as columns (on the right) in pandas dataframe addressed to contain the TAGs read at point 6

8.Check new pandas dataframe consistency (optional)

9.Convert the pandas dataframe series in Apache Arrow (use pyarrow)

D7.7. Innovative data handling, processing, fusion, and decision framework

 Page 77/77

10.Save the produced arrow as a .parquet file (read in input to influxdb)

11.Access to influxdb «WastePackage» database by using «token» released by organization B (data user

cannot belong to A or B)

12.Upload the data in influxdb bucket (if there is not error message: data will be available on cloud after about

60 s for data exploring from other authorized organization).

Figure A1.15. Alternative dashboard based on InfluxDB End User Customable.

