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Abstract 

The concept of Digital Twins (DT) has gained prominence over the past two decades, 
revolutionizing decision-making processes across diverse industries. The development is driven 
by data models, physics-based simulations, or hybrid approaches, and enhance decision-making 
processes. Building a digital twin involves challenges like long-term process monitoring, scaling 
models from lab to waste package, parameterizing models, quantifying uncertainties, and 
integrating feedback between complex processes. This report presents the efforts of WP 7.4 
consortium towards developing a proof of concept of certain aspects of digital twin technology for 
the predisposal management of radioactive waste, especially for low and intermediate level waste 
packages. 

Firstly, the report addresses the development of a prototype "digital twin" toolkit that can 
accommodate different physical and chemical models representing the mechanisms affecting 
waste packages. With this, the user should be able to compute the chemical and physical behavior 
of cemented waste packages during interim storage for given waste package properties (input) to 
retrieve parameters (output) relevant for its integrity evolution as a function of time. 
Implementation of two key processes viz., modeled with GEMS and ORCHESTRA, cement 
hydration and carbonation of cemented waste packages have been successfully demonstrated 
via a DT dashboard. In particular, the idea of waste integrity parameter as a measure has been 
proposed, which can be extended to other processes. 

The prediction of waste package evolution is complex as it involves different processes that 
happen on different temporal and spatial scales. Therefore, recourse to meta models become 
inevitable from DT perspective. The use of neural network-based machine learning surrogate 
models is demonstrated, which shows a significant gain in computational efficiency when carrying 
out sensitivity analysis on the rate of waste material degradation.  

Central to the DT framework is the development or implementation of appropriate (multi)physics-
based models. However, the physics-based models are typically phenomenological models and 
may involve many primary variables such as temperature, pressure, displacements etc. to capture 
the relevant thermo-hydro-chemo-mechanical processes of the waste package. This leads to a 
significant number of material parameters that have to be estimated based on laboratory or in situ 
experiments. This report describes Bayesian inference methods as a way forward for handling not 
only parameter estimation problems but also as a basis for the development of future metamodels.  

Whilst the above efforts addressed various components of a DT framework, a key contribution of 
task 7.4 is in the implementation of a real-life case study of alkali silica reaction (ASR) pathology 



   

 

   

 

at the drum scale. Such a pathology is a possibility if the right combination of alkali content, 
reactive silica and water occurs in the waste packages. A comprehensive experimental-numerical 
programme is presented that covers laboratory experiments such as isothermal calorimetric tests, 
autogenous shrinkage tests, ASR expansion tests, mechanical tests, and finally culminating in 
drum scale tests under natural and accelerated conditions. As part of DT, two approaches are 
taken: (i) a thermo-hydro-mechanical model to simulate ASR process is implemented based on 
existing knowledge, and (ii) two existing geochemical models, viz., ORCHESTRA and PHREEQC 
are applied based on the current conceptual understanding of the complex ASR process. While 
the objective of the first approach is to be able to predict strain evolution at the drum scale, the 
objective of the second approach is to be able to perform screening analysis to identify if ASR 
product is formed given the cement recipe. 

Implementation of digital twin is by no means trivial and fraught with many challenges. The 
experience of the consortium partners in this respect is also captured in this report, with a view to 
preparing for future research in DT technologies.   

This report is a result of the collaboration between SCK CEN, Magics, BAM, Amphos 21, NRG, 
and PSI. 
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1 Definition Digital twin and introduction 

1.1 Overview  

The concept of Digital twins (DT) emerged around two decades ago and since then has become a 
top trend in various industries. The building and maintenance of increasingly complex systems in the 
real world requires digital counterparts for decision making with the ability to track all information 
related to a physical asset over the complete lifecycle. The general interpretation of what exactly a 
DT is varies between different consortia and areas of applications and thus using the term usually 
requires a more detailed description. 

In general, a DT represents a product (or structure) over the complete four phases of the lifecycle 
(Create, Build, Operate, Dispose) but products are often integrated into other systems resulting in a 
hierarchy of DTs e.g., radioactive waste is disposed and thus in the final phase, but requires facilities 
to handle that which are still in the first phases of their lifecycle. A digital twin requires a dual 
representation in the real world, though it is not mandatory that they coexist at the same time. In 
particular, an intelligent digital twin can provide information about the real assets from the past, 
identify the current state and even predict future performance. These predictions can be based either 
on pure data models (AI), physics-based simulation models or combinations thereof. This includes 
setups where data is used to update the models or where data is used to compensate for model 
deficiencies (the inability of the model to represent reality). Although a digital twin requires a 
repository that allows access to all the information from the real asset (design drawings, reports, 
sensor (meta) data), its intelligence stems from the ability to provide information that is not directly 
measurable. This intelligence is realized by jointly analyzing and augmenting the information from 
the real asset with additional functionality. This includes the ability to install virtual sensors in 
simulation models to predict quantities of interest that are not measured (e.g. at positions that are 
not accessible or quantities that are difficult to measure at all), plan maintenance and support 
decision making with the ability to investigate case studies and quantify the impact of potential 
decisions on the future performance or identify in real-time critical scenarios with an automated 
process control and a feedback to the real system to mitigate the severity – potentially even without 
the need of human interaction or as a tool to compress the complex data stream from the real asset 
to support the decision making by a human.  

The principal objective of PREDIS task 7.4 is to develop a proof of concept of certain aspects of 
digital twin technology for the predisposal management of radioactive waste, especially for low and 
intermediate level waste packages. Thus, Chapter 2 presents the development of a prototype "digital 
twin" toolkit that can accommodate different physical and chemical models representing the 
mechanisms affecting waste packages. The user should be able to compute the chemical and 
physical behavior of cemented waste packages during interim storage for given waste package 
properties (input) to retrieve parameters (output) relevant for its integrity evolution as a function of 
time. Central to the DT framework is the development or implementation of appropriate 
(multi)physics-based models. A broad overview of some modelling aspects is presented in Chapter 
3 as a more detailed state of the art in modelling is addressed in deliverable 7.1 State of the Art in 
packaging, storage, and monitoring of cemented wastes [1]. Chapter 4 presents the outcomes of a 
study on the development of metamodels, in particular, neural network based surrogate models to 
circumvent high computational demand imposed by geochemical models such as GEM-SELEKTOR 
for complex geochemical systems. The physics-based models are typically phenomenological 
models and may involve many primary variables such as temperature, pressure, displacements etc. 
to capture the relevant thermo-hydro-chemo-mechanical processes of the waste package. This 
leads to a significant number of material parameters that have to be estimated based on laboratory 
or in situ experiments. Thus, Chapter 5 describes Bayesian inference methods that are deemed 
suitable for the present application. Chapter 6 presents by far the most comprehensive study of some 
of the components of DT using a case study of alkali silica reaction (ASR) pathology that may occur 
in waste packages. This chapter covers deployment of laboratory experiments, drum scale 
experiments, associated sensor architecture, theoretical models for thermo-hydro-mechanical 
behavior as well geochemical behavior for ASR, parameter estimation and numerical analysis. 
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Implementation of digital twin is by no means trivial and fraught with challenges. Thus Chapter 7 
aims to cover major issues faced by the consortium partners in this respect. 

1.2 Pipelines 

The Digital Twin comprises both the data (for past, current or even the future conditions - e.g. the 
expected loads or environmental conditions) and at the same time the models to analyze that data.  
A challenge when integrating Digital Twins is the complex interaction of different experts, 
subsystems, software tools, or sensors in a joint platform (e.g., chapter 6.4). To handle these 
challenges appropriately, automated pipelines with well-defined interfaces between the different 
subsystems must be developed such that individual subsystems can be developed while relying on 
the functionality of the complete Digital Twin. This includes the structuring and uploading of 
(meta)data to the database with agreed standardized formats (e.g. using schemas, ontologies, etc.), 
interfaces to query and visualize the data (both with an interactive GUI for humans as well as an 
interface for machines) and the automated (based on user-defined triggers) processing of the data. 
This processing of data can have multiple layers of complexity potentially being executed 
subsequently in a pipeline defined by a direct acyclic graph. This can range from filtering of the data 
and feature extraction for ML models over simple regression models up to machine learning models 
or complex physics models with computer intensive model evaluations (e.g. using FEM). In particular 
in the context of Digital twins, it is very common that these models are hierarchical. For example, 
there is a model updating module that takes as input the filtered data and a model and provides an 
update of the parameters, which are then used to make predictions of the future performance. 

With an increasing complexity of the data processing in each sub-module of the data processing 
pipeline, there is a need to standardize these modules such that the execution is reproducible, i.e. 
the interfaces of the module (input and output) as well as the compute environment (e.g. using 
containers or conda). In order to test these pipelines, it is often advantageous to set up a continuous 
integration workflow with a set of representative minimal number of working examples that allow to 
identify inconsistencies in the Digital Twin. 
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2 Digital Twin toolkit  

As the evolution of waste packages is most likely governed by a combination of chemical and 
physical-mechanical processes, it follows that the Digital Twin has to contain a combination of 
chemical interaction and chemo-mechanical process models. There are different ways to approach 
this and technical methods to implement and integrate. One approach would be to model a complete 
single waste package using a detailed reactive transport model discretized at mm scale, that is 
combined with a mechanical module to describe physical behaviour based on local chemical 
conditions. The drawbacks of this approach would be that not only calculations would take a very 
long time, but also that a large set of input data would be required that is currently not available in 
practice for any waste package. The other end of the scale of complexity would be to treat the 
complete waste package as a homogeneous well-mixed cell, in which the main degradation 
processes are represented with a set of processes that are generally responsible for most changes 
related to the evolution of mineralogical and mechanical properties (Figure 2-1). The advantage of 
this approach would be that calculations are much faster and that much fewer input data would be 
required. A problem would be that this method would probably not be able to capture the main driving 
mechanisms for chemical evolution in heterogeneous systems as these are determined by local 
chemical conditions.  

 

 

Figure 2-1 A schematic overview of the processes in a digital twin 

 

2.1 Dashboard 

In the context of the PREDIS project a dashboard was developed as a proof of concept where users 
can interact with different models related to waste package degradation. Such a dashboard can 
contain different physical and chemical models representing the mechanisms affecting waste 
packages. This serves as a way for the user to interact with the models and to produce data for 
different scenarios that could be then used in a decision framework on the suitability of the waste 
package.   

The models can be run for different given waste package properties (input) to retrieve parameters 
(output) relevant for waste package integrity evolution as a function of time (Figure 2-2). This allows 
us to produce datasets of waste package evolution scenarios, which combined with experimental 
observations can be used to train surrogate models. Such models can be used to efficiently test 
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different compositions for potential problems of existing and future waste packages and do 
uncertainty propagation and sensitivity analysis.  

The results of one process could be used as input for another and all output results can finally be 
used to train surrogate models. This is similar to choosing models for the most significant processes 
that control waste degradation and build a metamodel (see chapter 4). Based on the input values 
(dimension, physical properties and chemical composition of the materials) and the appropriate 
evolution submodel(s) parameters that indicate integrity evolution of the waste package as a function 
of time (e.g. pressure and or volume changes) may be defined and calculated.  

 

 

Figure 2-2 Digital Twin concept used to develop the dashboard prototype 

 

A demo prototype of the Digital Twin dashboard is running on the geoml platform 
(https://digitaltwin.geoml.eu/). Two examples have been implemented demonstrating the potential of 
having a platform where users can interact with models related to cementitious waste package 
evolution. These models have been implemented using different geochemical modelling codes and 
show the potential of having several tools running on the same platform that can be used to model 
different aspects.  

The prototype dashboard was implemented in the Jupyter notebook environment using the python 
code. This is a web-based, collaborative interactive development environment that works in the 
browser. One can easily create simple demonstrative web apps that can be shared between 
developers and users with no or minimum requirements for installing dependencies and can take 
advantage of the different python libraries for adding data processing, statistical analysis, 
visualization, and machine learning functionalities.   

The actual code that runs the model is in the form of python scripts that collects the input parameters 
and that calls the respective geochemical modelling code or mathematical formulations to model the 
respective process (e.g., cement hydration, carbonation).  

As a first example, the user can select and run a “Cement Hydration” process and test the volume 
evolution of a waste package cement recipe during hydration based on the cement recipe (Figure 
2-2).  

https://digitaltwin.geoml.eu/
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(a)        

 

(b)  

 

Figure 2-3 Cement hydration model in the dashboard prototype, (a) process input, (b) results. 
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The input parameters are the weight percent of clinker phases (defining the clinker composition), 
water to cement ratio and relative humidity, and the output data are the volumes or masses clinker 
and cement hydrate phases at different time of cement hydration. In the background a python script 
runs that implements a kinetic model for the hydration of the clinker phases, the so-called Parrot 
Killoh model [2] while the geochemical equilibrium calculation is done using the xgems python 
interface of GEMS code [3]. 

A second example is running a 2D cement carbonation scenario (Figure 2-4) and calculates the 
evolution as a function of time of a waste package integrity parameter. As input the user can change 
several chemical and physical parameters of the domain, such as the composition of the cement, 
the composition of incoming carbonate rich fluid, and porosity. The final integrity parameter 
calculated as: Integrity = 1 - (12-pH)/7 is an example of how a certain property of the system can be 
used to assess its integrity. In this case the integrity is given by the fraction of material having pH 
values between 5 and 12, with integrity 1 when all material has pH 12 and 0 when the pH is 5 in all 
the domain signifying that all the cement was carbonated (pH of the carbonate rich solution). The 
actual calculations are done by calling Orchestra [4] code with the given input.  

 

 

Figure 2-4 Cement carbonation dashboard example.  

 

In a similar way to the above examples, other models of waste degradation can be implemented and 
exposed to the user for interaction in the dashboard. As the evolution of waste packages is most 
likely governed by a combination of chemical and physical-mechanical processes, it is logical that 
the Digital Twin has to contain a combination of chemical interaction and chemo-mechanical process 
models. Examples of chemical processes are cement hydration, carbonation, moisture evolution, 
alkali silica reactions (ASR), sulphate attack, gas generation, metal corrosion, etc.  
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Based on available data on waste packages (composition and properties) a set of reference waste 
types, predefined compositions, and materials can be made available for the users to create their 
desired waste package “recipe” (matrix, waste type, material amount and volume) and run the 
available evolution models for a given time interval. This will allow to test different compositions for 
potential problems of upcoming/future waste packages (e.g., suitable aggregates, new phosphate 
rich cements). But also, to test different “what if scenarios” on legacy waste packages for which 
limited data is available. For example, to replace missing waste package data with predefined data 
provided in the Digital Twin, combine it with the available information and see if there could be any 
waste package “recipe” that would result in exceeded waste acceptance parameters (e.g., use of 
different aggregates that could promote chemical reactions leading to a large volume change).  

By running the models on different input parameters (based on waste packages composition data) 
a dataset of waste package evolution scenarios can be generated. These datasets could be used to 
train surrogate models such as artificial neural networks for fast and efficient prediction of the 
evolution of future wastes without the need to run the full, time consuming, degradation models. In 
addition, having the possibility to efficiently run degradation models thousands of times allows for 
the use of different statistical models such as Monte-Carlo (MC) based uncertainty propagation (UP), 
and Global Sensitivity Analysis (GSA) [5]. These methods provide information on the probability that 
output properties exceed a threshold based on sampling the input parameter distribution (MC-UP) 
and rank input parameters based on their influence on the model output (GSA).  
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3 Models 

3.1 Macroscale 

The choice of the macroscale model depends on the type of degradation mechanisms to be 
addressed. In particular, for the cemented waste forms based on ordinary Portland cement, one 
should expect processes such as delayed ettringite formation, alkali silica reaction (ASR), and gas 
pressure originating from corrosion of metals. These may result in an unstable waste form, which 
can be due to cracking, volumetric expansion, and/or production of unstable products. From the 
perspective of a Digital Twin, it is always recommended to work with simplified models requiring 
minimal material parameters, while capturing main features of the degradation mechanism. 
However, often coupled models are also necessary to correctly capture the degradation behavior. 
For example, degradation processes such as ASR depend on temperature and moisture fields 
coupled with mechanics warranting use of coupled models. A common choice of coupled models is 
described in SOTA [1]. 

3.2 Cement chemistry, geochemical models 

One way to predict the chemical evolution of cemented waste packages is to use a thermodynamic 
modelling approach. Thermodynamic modelling applied to cement science has significantly 
increased confidence in the prediction of chemical processes during cement hydration and in 
durability-related problems. Geochemical simulators, such as GEMS, ORCHESTRA, or PHREEQC 
can be used together with cement-specific thermodynamic data to predict changes in chemical 
composition upon a perturbation. Reviews of advances in this field can be found elsewhere [6-9]. 
For instance, Lothenbach et al. [9] studied the influence of temperature on cement hydration using 
thermodynamic modelling, showing a very good agreement with experimental data of hydration 
experiments in terms of pore solution composition and solid phase assemblage. This approach aims 
to compose complex interaction models from existing literature data, in the form of thermodynamic 
databases containing sets of reactions and constants. Using total composition of a (e.g. cemented 
waste) system as input, such models can then predict the distribution of elements over different 
chemical forms in an equilibrium condition. An advantage of thermodynamic models is that building 
a model can make use of large datasets of existing information and does not need to be developed 
completely from scratch. Furthermore, the model allows blind predictions of systems for conditions 
for which no measurement data is (yet) available (e.g. over longer time scales).  

When coupled with transport of solutes across the porous structure of cementitious materials, 
thermodynamic models are also used for the prediction of time-dependent phenomena such as 
calcium leaching, internal/external sulfate attack, or chloride ingress in concrete structures [10, 11]. 
However, such coupled reactive models may not include specific new interactions, or reaction 
kinetics. Note that even the thermodynamic models need to be evaluated for their predictive 
capabilities under new conditions. These thermodynamic models require a large set of input 
parameters, and also produce a large set of output parameters. This automatically implies that it is 
very difficult to “improve” such complex models by measuring empirically only a limited number of 
output parameters for a certain system with short term experiments. Geochemical modelling 
approaches are discussed in SOTA [1]. 

  



D7.5 Digital Twin, toolkit, models and use case example 

 

 Page 16/66 

 

4 Metamodels  

Metamodels and surrogates can be used to approximate complex systems where obtaining an 
analytical solution may be either difficult or impossible, to provide computational efficiency, and to 
act as interfaces between different temporal and spatial scales. Metamodels are built for simplifying 
the investigated system using formulations of models for the main processes that define its evolution 
(see chapter 6.7).   

Surrogate models are a specific type of metamodel commonly associated with approximating 
complex simulations. Surrogate models are built for using interpolation and regression methods to 
represent the relationships within the data. The process of developing surrogate models involves 
data collection from experiments or simulations, model construction using different mathematical 
methods, and model optimization and validation. The model construction can be done using various 
techniques such as Bayesian approaches (see chapter 6.7.4.3), and machine learning algorithms 
such as neural networks (see chapter 4.1) that should capture the input-output relations. 

4.1 Neural Networks  

The prediction of waste package evolution is complex as it involves different processes that happen 
on different temporal and spatial scales. Modelling of such systems can become computationally 
expensive and the coupling between different processes difficult to implement. Machine learning 
methods such as neural networks (NN) can be used in such cases to address issues of coupling 
different processes and time-consuming calculations [12]. Neural networks can provide a statistical 
emulation method for the degradation process. These NN need to be trained using datasets 
generated by running the actual models using different input parameters in order to capture the 
relations between the input and output parameters.  

The different materials conditioned in a cementitious matrix will be subject to different degradation 
processes and to the interaction with the main degradation products. With respect to the interim 
storage many of the geochemical processes happen on much larger time scales.  For example, the 
degradation of organic matter (10-3-10-5 mol/a), corrosion of metals (10-5-10-8mol/a for aluminum and 
steel), mineral dissolution/precipitation (10-14-10-16 (mol/m2 s), quartz dissolution; 10-7-10-11 (mol/m2 
s), calcite precipitation), and ion diffusion in cement (10-12 m2/s; gas diffusion 10-7 m2/s) take several 
years to proceed in a significant amount [13]. The evolution of these degradation processes can be 
highly uncertain due to unknown reaction kinetic rates, complex surface characteristics, and material 
heterogeneities.  

An example of using a NN surrogate model to assess the deterioration mechanisms of various 
materials like iron, aluminum, zinc, and brass, in cementitious waste packages is presented [14]. 
The degradation time of these materials while slow can be relevant to interim storage time scales of 
several tens of years. The NN is trained to predict the material degradation process by geochemical 
interactions within a cemented waste package over a span of up to 100 years. The sensitivity of the 
highly uncertain reaction rates (input parameters) of various materials is parametrized and used to 
assess their influence on the temporal evolution of gas amounts, masses of materials, ion 
concentrations and pH values (output parameters) which affect the bulk porosity and, consequently, 
on the integrity of waste containment. For this sensitivity analysis, 1 million cases are generated by 
the neural network-based surrogate model.  



D7.5 Digital Twin, toolkit, models and use case example 

 

 Page 17/66 

 

 

Figure 4-1 Gas generation in a cemented waste package from [15]. Solid lines modelled using a 
2D reactive transport and dashed lines using the mixing tank approach [13, 16] 

The degradation processes in a waste package are connected to the type of materials (their 
composition and physical properties) and their distribution. Evolution is influenced by complex 
chemical, transport and mechanical effects that would necessitate a very complicated modelling 
setup. In many cases some critical processes and effects can be qualitatively if not quantitatively 
studied by simplified models. A 2D reactive transport model [15] that coupled transport and chemical 
degradation kinetic processes via a look-up table approach was proposed. The reactive transport 
model did not include mechanical effects and showed similar gas generation rates up to 40 years 
when compared to the mixing tank modeling approach (Figure 4-1). Gas production was limited by 
water availability (dry out of the waste drum) at later evolution times. 

A mixing tank model approach is used here for generating the training datasets, as a simplification 
of the unknown material heterogeneity in the cemented waste package [13]. The processes are 
modelled using geochemical calculations assuming complete mixing of the materials where all 
amounts of materials involved are available for reaction deepening on their reaction rate. This 
method allows to assess the relative contribution of different input parameters but does not account 
for detailed centimeter scale resolved evolution. Mechanic effects and transport processes are not 
considered although they might strongly influence the waste package evolution.  

In the present example we focus on the organic materials degradation and metal corrosion rates. 
The organic degradation is assumed for readily degrading organic compounds (LWM), such as 
cellulose, and for PVC to follow the chemical reactions [13]: 

LWM organics: C2H4O2 → CO2(g) + CH4(g)  (4-1) 
  
PWC: 4 C2H3Cl + 6 H2O → CO2(g) + CH4(g) + HCl(aq)   (4-2) 

 

The amount (m) of organics degraded as a function of time (t) is represented by: 

m(t)organics = m(0)organics * e-k*t (4-3) 
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where, m(0)organics is initial inventory of organic matter (mol), k is the rate constant (a-1). 

The oxidation state of carbon is determined by the above reactions corresponding to the reduction 
capacity of organic matter [13] which fixes the ratio of CH4 to CO2 produced during decomposition. 
The produces gases are not allowed to further react. The metal corrosion processes are described 
by the following chemical reactions [13]: 

Aluminium: Al(s) + 3 H2O(l) → Al(OH)3(s) + 3/2 H2(g)  (4-4) 
  
Brass: CuZn(s) + 4 H2O(l) → Zn(OH)2(s) + Cu(OH)2(s) + 2 H2(g)  (4-5) 
  
Iron/steel: 3 Fe(s) + 4 H2O(l) → Fe3O4(s) + 4 H2(g)  (4-6) 
  
Zinc: Zn(s) + 2 H2O(l) → Zn(OH)2(s) + H2(g) (4-7) 

 

The time dependent metal corrosion is represented by:  

m(t)Metal = m(0)Metal - k*t, (4-8) 
  

rate constant k = 
𝑅∗𝐴∗𝜌

𝑀
, (4-9) 

 

where m(0)Metal is the initial inventory of metal (mol), R the Steady-state corrosion rate of metal 
(m*a- 1), A the Surface area of metal in the waste form (m 2), ρ the Density of metal (kg*m- 3), and M 
is the Molar mass of metal (kg*mol - 1) 

The H2(g) that is produced during decomposition is considered inert during the evolution and is not 
allowed to further react with the other components. The chemical system was setup in GEM-Selektor 
geochemical code [3] and exported for the use in Python jupyter notebook scripts through the  
xGEMS C++/Python interface. Detailed description of the model setup and initial conditions are given 
in Wieland et al. (2020) [13]. Based on the initial composition of the cementitious material used for 
conditioning and the waste material, the geochemical evolution in the waste package was modeled 
as a function of time (up to 100 years) accounting for the effect of the degradation of organic waste 
materials and metal corrosion assuming unlimited water availability. Based on their reaction rate at 
different time steps a certain amount of these materials are allowed to react and are given to GEMS 
to the chemical composition of the system, stable phases (aqueous, gaseous, solids), their amounts 
and composition (Figure 4-2). Over the time span of 100 years the brass is predicted to corrode in 
the first 2.5 years, while the aluminum waste is completely corroded in about 50 years. The LWM 
are also predicted to degrade in about 100 years. This calculation was based on the reference rates 
provided in Wieland et al. [13] and does not account for possible change due to passivation or 
acceleration. In the sensitivity study it is assumed that the spread of rates can be of one order of 
magnitude lower or higher than the reference values.  
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Figure 4-2 Chemical evolution of a cemented waste package over 100 years with modeled waste 
degradation processes (organics degradation and metal corrosion) 

 

A NN surrogate model is trained on such different waste package evolution calculations for different 
reaction rates. Figure 4-3 depicts the neural network structure comprising an input layer, hidden 
layers, and an output layer. This structure features six inputs and fourteen outputs. The 6 inputs 
include time, organic degradation rate, and corrosion rates for Fe, Al, Zn, and brass ('time', 
'organicaDegradation_rate', 'corrosionFe_rate', 'corrosionAl_rate', 'corrosionZn_rate', 
'corrosionBrass_rate'). The 14 outputs are categorized into three groups: gas information (CO2(g), 
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H2(g), CH4(g)), mass of various materials (clinoptilolite (CLI(ca)_mass), sand (SiO2(cr)_mass), 
copper (Cu(cr)_mass), aluminum (Aluminium_mass), brass (brass_mass), iron (Fe(alpha)_mass)), 
aqueous phase concentrations (Cl (Cl_total_aq_phase), K (K_total_aq_phase), Na 
(Na_total_aq_phase), Ca (Ca_total_aq_phase)), along with the pH value.  

 

 

Figure 4-3 Schematic illustration of 6 inputs and 14 outputs of the NN surrogate model, from Hu et 
al. (2024) [14]. 

 

To generate the training datasets a range of reaction rate values was derived (Table 4-1). This range 
assumes an uncertainty of one order of magnitude in the reaction rate values. Utilizing an orthogonal 
sampling method, 25 distinct calculations are performed, each based on the values of the respective 
variables. The first step involves training of the NN. In the second step a sensitivity study is done on 
1 million cases generated for many combinations of the input parameters using the computationally 
efficient NN surrogate model.  

 

Table 4-1 Input reaction rate constant (k in a-1) for organics, and reaction steady state rate (R in 
mol a-1) of different materials with ranges assumed for the sensitivity studies. Values for generating 

the training datasets were derived from orthogonal sampling. One common factor (F) is used as 
input for the two different organic materials that is in each case multiplied with the reference rate 

constants, k_PVC 3.9e-5 and k_LWM 2.1e-3 [14] 

Variables Min~Max Values 

organicaDegradation_rate 
multiplication factor 

10~1000 10, 257.5, 505, 752.5, 1000 

corrosionFe_rate 2e-8~2e-6 2e-8, 5e-7, 9e-7, 1.3e-6, 1.7e-6, 2e-6 

corrosionAl_rate 1e-5~1e-3 1e-5, 2.5e-4, 4.5e-4, 6.5e-4, 8.5e-4, 1e-3 

corrosionZn_rate 1e-4~1e-2 1e-4, 2.475e-3, 4.45e-3, 6.425e-3, 8.4e-3, 1e-2 

corrosionBrass_rate 1e-5~ 1e-3 1e-5, 2.5e-4, 4.5e-4, 6.5e-4, 8.5e-4, 1e-3 

The NN used in this study includes an input layer, two hidden layers, and an output layer. The optimal 
number of neurons for each hidden layer was determined to be 96 (Figure 4-4), based on the 
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denormalized test loss as a function of neuron count and the denormalized loss across epochs for a 
neural network configuration with 96 neurons in each hidden layer. Using this configuration, the 
training time of the NN model was 51.1 seconds.  

 

(a)

 

(b)  

 

Figure 4-4 NN optimal number of neurons determination: (a) test loss vs number of neurons in 
each hidden layer; (b) loss vs epochs, when using 96 neurons, from Hu et al. (2024) [14]. 

 

For assessing the sensitivity of the reaction rate constants 1 million cases of degradation calculations 
were generated using the NN surrogate model, taking combinations of 10 different values across 6 
different inputs (Table 4-2). Generating this large number of cases required merely 1.97 seconds, 
whereas performing the same task with the full geochemical calculation tool GEMS Python scripts 
would take approximately 78.9 days. This stark contrast highlights the remarkable time efficiency 
(~128,500 times faster) of the neural network-based surrogate model compared with a “simple” 
mixing tank geochemical model. This computational time difference only increases if the model is 
more complex, e.g., accounting for transport, mechanics feedback. 

 

Table 4-2 Values of variables for 1 million cases with neural network-based surrogate model. 

Variables Values 

time 0, 11.11, 22.22, 33.33, 44.44, 55.55, 66.66, 77.77, 88.88, 100. 

organicaDegradation_rate 
multiplication factor (F) 

10, 120, 230, 340, 450, 560, 670, 780, 890, 1000. 

corrosionFe_rate 
2.0e-08, 2.4e-07, 4.6e-07, 6.8e-07, 9.0e-07, 1.12e-06, 1.34e-06, 1.56e-
06, 1.78e-06, 2.00e-06. 

corrosionAl_rate 
1.0e-05, 1.2e-04, 2.3e-04, 3.4e-04, 4.5e-04, 5.6e-04, 6.7e-04, 7.8e-04, 
8.9e-04, 1.0e-03 

corrosionZn_rate 
1e-4, 1.2e-3, 2.3e-3, 3.4e-3, 4.5e-3, 5.6e-3, 6.7e-3, 7.8e-3, 8.9e-3, 1.0e-
2. 

corrosionBrass_rate 
1.0e-05, 1.2e-04, 2.3e-04, 3.4e-04, 4.5e-04, 5.6e-04, 6.7e-04, 7.8e-04, 
8.9e-04, 1.0e-03 

 

The results of the sensitivity analysis are reported using range and variance analysis of the output 
properties. The range represents the difference between the maximum and minimum values, while 
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the variance is employed as a statistical measure to assess the spread of the data in the 1 million 
cases calculations. Note that the range of minimum and maximum values is calculated based on 
results from 0 to 100 years in each case using different rates for one input variable while keeping 
the other input variables constant.  

 

(a)  

 

 
(b) 
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(c) 

 

 
(d)  
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(e) 

 

 

Figure 4-5 Range and variance of output parameters with values of input parameters from Hu et al. 
(2024) [14]: (a) organics degradation rate; (b) iron corrosion; (c) aluminium corrosion; (d) zinc 

corrosion; (e) brass corrosion; Output gases in mol, mass in kg, elements in aq phase in mmol/m3. 

 

Figure 4-5 displays the ranges and variances for the output parameters in relation to each input 
variable with 1 million cases.  

The Digital Twin and surrogate model for the geochemical evolution of cementitious waste packages 
demonstrates the efficiency of neural network-based surrogate models in significantly enhancing 
computational efficiency, reducing the generation time of 1 million cases from nearly 79 days to 
under 2 seconds. 
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5 Model parameter updating  

A significant challenge in reliably utilizing developed physics-based models lies in the uncertainties 
associated with them, primarily categorized into "aleatoric" and "epistemic". Aleatoric uncertainties 
mainly involve inaccuracies in measurements collected from experiments, while epistemic 
uncertainties stem from insufficient physics assumptions and uncertain model parameters. This 
chapter focuses on addressing the epistemic uncertainties of previously introduced models through 
parameter identification aligned with experimental data. This task is typically framed as an inverse 
problem, and its solution yields a set of more reliable model parameters, ultimately enhancing the 
overall reliability of the model. Solving such an inverse problem often translates to an optimization 
problem, where a well-defined objective function must be optimized. Optimization problems 
generally fall into two categories: “constrained” and “unconstrained” [17]. A widely used 
unconstrained optimization method is the nonlinear least-squares approach (NLLS). The primary 
challenges in solving optimization problems related to inverse problems are “ill-posedness” and “ill-
conditioning” (see [18] for a review). Ill-posedness arises in situations with multiple or non-unique 
extrema of the objective function, often due to a non-continuous dependency between parameters 
and model response. Regularization techniques are commonly employed to address ill-posedness, 
with the singular value decomposition (SVD) being a notable example. SVD particularly deals with 
an ill-posed linear system of equations by truncating lower singular values more affected by noisy 
data. Alternatively, regularization can be achieved by imposing extra conditions on the parameters, 
such as minimum norm parameter values (Tikhonov regularization). An optimization problem can 
also become ill-conditioned when its solution is too sensitive to small amounts of noise in the data, 
making it more challenging to identify parameters accurately. This justifies the increasing trend 
toward utilizing stochastic approaches rather than deterministic ones in the context of model 
updating. Therefore, in the following subchapter, our focus narrows to Bayesian approaches for 
model parameter identification. 

5.1 Theoretical background 

Acknowledging that measurement error and model inadequacy are inevitable, a common stochastic 
representation of the inverse problem is 

𝐹(𝐱) = 𝐝 + 𝐞  (5-1) 

where 𝐹(∙) is a deterministic, error-free forward model that expresses the relation between the 
unknown or uncertain model parameters 𝐱 and the 𝑁𝑑-dimensional measurement data vector 𝐝, and 

the noise vector term 𝐞 lumps measurement and model errors. In this work, it is assumed that 𝐞 
follows a zero- mean multivariate Gaussian distribution, i.e., 𝐞 ∝ 𝑁(0, 𝚺𝑒) with 𝚺𝑒 a diagonal 

covariance matrix. If it is further assumed that the residual errors in 𝐞 have constant variance, 𝜎𝑒
2, 

then we have 𝚺𝑒 = 𝜎𝑒
2𝐈 with 𝐈 the identity matrix.In the Bayesian paradigm, the inferred model 

parameters 𝐱 are viewed as random variables with posterior pdf, 𝑝(𝐱|𝐝) , given by 

p(𝐱|𝐝) =
p(𝐝|𝐱)p(𝐱)

p(𝐝)
 

(5-2) 

where 𝑝(𝐝|𝐱) signifies the likelihood function of 𝐱 and 𝑝(𝐱) denotes the prior distribution of 𝐱. Broadly 
speaking, 𝑝(𝐝|𝐱) encapsulates the misfit between measured and simulated data while 𝑝(𝐱) encodes 
the information available about 𝐱 before collecting 𝐝. The normalization factor, 𝑝(𝐝), is to be obtained 

from numerical integration over the parameter space so that 𝑝(𝐱|𝐝) is a proper probability density 
distribution and integrates to unity. The 𝑝(𝐝) quantity is generally difficult to estimate in practice but 

is not required for parameter inference if the dimensionality of 𝐱 is fixed. In the remainder of this 
report, we will focus on the unnormalized posterior 𝑝(𝐱|𝐝) ∝ 𝑝(𝐝|𝐱)𝑝(𝐱). Based on the Gaussian 

assumption for 𝐞 in equation (5-1), 𝐞 ∝ 𝑁(0, 𝚺𝑒), the likelihood function 𝑝(𝐝|𝐱) can be written as 
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𝑝(𝐝|𝐱) = 𝑁(𝐝|𝐹(𝐱), 𝚺𝑒) =
1

(2𝜋)𝑁𝑑/2

1

√|𝚺𝑒|
exp [−

1

2
(𝐝 − 𝐹(𝐱))

T
𝚺𝑒

−1(𝐝 − 𝐹(𝐱))] 
(5-3) 

As mentioned above, 𝐞 is the sum of the measurement and model errors. The former ones are 
typically known but the later ones are not. How to deal with these unknown model errors within a 
Bayesian inversion has been the subject of much research (at least in the field of hydrologic 
modelling) and still remains an open issue. There are basically three possible options. First, one 

might just ignore them. This amounts to set the 𝑖 = 1, … , 𝑁𝑑 diagonal elements of 𝚺𝑒, 𝜎𝑒,𝑖
2 , to 𝜎𝑚𝑒𝑎𝑠,𝑖

2 , 

that is, 𝜎𝑒,𝑖 = 𝜎𝑚𝑒𝑎𝑠,𝑖, with 𝜎𝑚𝑒𝑎𝑠,𝑖 the standard deviation the 𝑖𝑡ℎ measurement error (under the 

constant variance assumption we thus have that all 𝜎𝑒,𝑖 are equal). Doing so will however lead to an 

underestimation of the posterior parameter uncertainty if model errors are present. Basically, the 
larger the model errors the more severe the uncertainty underestimation. Second, one can jointly 
infer the model errors, 𝜎𝑚𝑜𝑑𝑒𝑙,𝑖, together with the model parameters 𝐱 (thus now inferring 𝑝(𝐳|𝐝) with 

𝐳 =  [𝐱, 𝛔𝑚𝑜𝑑𝑒𝑙] and 𝛔𝑚𝑜𝑑𝑒𝑙 = [𝜎𝑚𝑜𝑑𝑒𝑙,1, … , 𝜎𝑚𝑜𝑑𝑒𝑙,𝑁𝑑
]) and then set 𝜎𝑒,𝑖 = 𝜎𝑚𝑒𝑎𝑠,𝑖 +  𝜎𝑚𝑜𝑑𝑒𝑙,𝑖 in 𝚺𝑒 . This 

is equivalent to jointly infer 𝐱 and 𝛔𝑒 directly, with a lower bound of 𝜎𝑚𝑒𝑎𝑠,𝑖 set to the prior σ𝑒,𝑖 

distributions. This strategy is common in the hydrology and geophysics fields (e.g., [19]). However, 
to the best of our knowledge there is no consensus in the literature as whether jointly inferring 𝐱 with 

𝛔𝑒 will produce consistent uncertainty estimates. Lastly, one can take the arguably subjective 
approach of fixing the 𝜎𝑒,𝑖 elements to values that are deemed to “appropriately” encompass the sum 

of measurement and model errors. 

5.2 MCMC simulation of the posterior parameter pdf 

An exact analytical solution of 𝑝(𝐱|𝐝) is not available in many practical cases, and we therefore resort 
to Markov chain Monte Carlo (MCMC) simulation to generate samples from the posterior distribution. 
The basis of this technique is a Markov chain that generates a random walk through the search 
space and iteratively finds parameter sets with stable frequencies stemming from the parameter 
posterior pdf. Designing accurate and efficient MCMC algorithm is a field of research in itself and we 
refer to the textbook of Gelman et al. (2013) [20] for more details. In this study we used both the 
NUTS algorithm by Hoffman and Gelman (2014) [21], as implemented in the Pyro probabilistic 
modelling library [22], and our own Python-based version of the DREAMzs algorithm [23, 24]. NUTS 
is a state-of-start variant of Hamiltonian monte Carlo (HMC), which is quite efficient but requires that 
an accurate estimation of the gradient of the (log-)posterior density is available at low computational 
cost (e.g., through autodifferentiation). DREAMzs is a general-purpose MCMC algorithm that has 
proved to work well for many complicated inverse problems in hydrology (e.g., [24-26]) and 
geophysics (e.g., [27-29]), amongst other fields. For the rather simple inverse problems considered 
herein, we expectedly found that both NUTS and DREAMzs derive the same posterior pdf at 
negligible computational cost. 

It is important to note that MCMC is considered as the most statistically sound method for solving 
inverse problems in a Bayesian way (see, e.g., [30]) but can be prohibitively slow for computationally 
demanding models. That is why faster alternatives that rely on different levels of approximation have 
been proposed. Such alternatives will be used to invert the measured drum-scale strain data, for, 
which the associated forward model developed by SCK CEN (which involves numerically solving the 
relevant PDEs with the COMSOL software) can take 10 to 15 minutes per run. Faster (but more 
restrictive) alternatives to MCMC to derive the posterior parameter distribution can broadly be 
categorized in two groups: 

• The first group resorts to simplification of the forward model, e.g., by using metamodels or 
lower-fidelity models, to speedup evaluation of the likelihood. This acceleration comes 
however at the cost of introducing additional errors or bias to the inference, since the 
considered metamodel never approximates the physics-based model perfectly. If the 
metamodel is sufficiently accurate, however, then this bias can be controlled. This strategy 
will be investigated by SCK CEN, using either Gaussian processes (GPs) or artificial neural 
networks (NNs) metamodels. 
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• The second group includes methods that rely on simplifying assumptions about the shape of 
the posterior parameter pdf, e.g., Laplace approximation (INLA, [31]) or variational inference 
(VI, e.g.,[32]). These methods still use the original physics-based model but require far less 
runs than MCMC. The VB approach described in Chapter 5.3 is a VI method and assumes 
that the posterior parameter pdf is Gaussian.  

The two inverse problems considered in this report, that is, autogenous shrinkage (AS) and ASR 
expansion model parameter inference based on sample-scale data, make use of simple 
analytical models that are computationally very cheap. Therefore, performing MCMC sampling 
here is straightforward. 

5.3 Variational Bayesian inference 

As previously mentioned, we aim at Bayesian approaches to identify unreliable/unknown parameters 
of the models introduced earlier. These techniques, which primarily rely on Bayes's theorem, not 
only handle noisy data but also address epistemic uncertainties arising from assumptions and 
simplifications within the model. Moreover, these methods are able to quantify the accuracy of the 
calibrated model in approximating reality. This is achieved through the probabilistic quantification of 
unknown parameters, represented as probability distribution functions (in continuous cases), as 
opposed to deterministic evaluations [33]. In the following, we specifically employ a variational 
Bayesian scheme - as an approximate formulation of the theorem - for identifying the parameters of 
the ASR model. 

We utilize the variational Bayesian (VB) approach proposed in Chappell (2009) [34] for the estimation 
of model parameters, which is briefly outlined in the following. The VB method is based on an additive 
noise model 𝑦 = 𝑔(𝜃) + 𝑒, where y is the measurements/observations (in our case: measured 
strain), and e is an (additive) model error that corrects the response/output of the (forward) model g 
at specific positions/sensors corresponding to the observations. The function g depends on a set of 
unknown parameters denoted by the vector θ. In our case, g is the model given above, and θ 
contains the inferred material parameters. Each of the three terms y, g, and e is a vector of the same 
length, i.e. the number of observations. The noise e - which is the discrepancy between the model 
response and the measured data - is assumed to follow a zero-mean multivariate normal (MVN) 

distribution: 𝑒~𝑀𝑉𝑁(0, 𝛷−1𝐼). Here Ι is an identity matrix of a respective size, and Φ is the noise-
precision that describes the level of the discrepancy between the model response and the data (a 
higher precision, a lower discrepancy). As will be seen in the results, the VB method can estimate 
the noise parameter Φ along with the inference of the model parameters. For the inference, the 
prior/posterior of the model parameters are assumed to follow MVN distributions; i.e. 

𝜃~𝑀𝑉𝑁(𝑚, 𝛬−1), with m and Λ respectively being the mean value and the precision matrix (inverse 
of covariance matrix). Additionally, the prior/posterior of the noise precision Φ are assumed to follow 
Gamma distributions; i.e. 𝛷~𝛤(𝑐, 𝑠), with the two parameters (c, s) = (shape, scale). Starting from 

certain priors for all parameters through some deterministic values for (𝑚0, 𝛬0, 𝑐0, 𝑠0), the VB method 
will compute their respective posteriors (m,Λ,c,s). This is performed by minimizing the so-called 
Kullback–Leibler divergence that measures the distance between the true and approximated 
posteriors of the model parameters. Also, one requirement for using the specific VB method is being 
able to compute the derivative of the model response with respect to the latent parameters. For the 
present algebraic model, such derivatives can be obtained analytically. 
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6 Use case on ASR  

6.1 Introduction 

Predisposal waste management is to produce waste packages suitable for storage, transportation 
and final disposal. For decades, the nuclear industry has used cement-based materials (CBM) to 
immobilize low- and intermediate-level short-lived and long-lived radioactive waste. Compared to 
other solidification techniques, cementation is relatively simple and inexpensive. Moreover, CBM 
shows many advantages including a good self-shielding, and a high alkalinity allowing them to 
precipitate many radionuclides. One could expect that this practice would result in a stable waste 
form and being well compatible with the final disposal site. There are, however, many examples that 
show that this is not always the case.  Specific issues have been addressed, such as the gel-
formation attributed to ASR in the concrete operational waste of the nuclear power plant of Doel, 
Belgium. The cement–waste interaction disturbs the equilibrium between the pore solution of the 
cementitious materials and the solid phases of the cement matrix, which results in dissolution and/or 
precipitation of minerals. The degradation is a function of many factors including the constituent 
materials, its location (e.g. coastal, inland or underground for waste disposal), climatic conditions 
(e.g. temperature and moisture), and the presence of external agents (e.g. sulfates and chemicals). 
The most common chemical degradation processes include chloride ingress, sulphate attack, alkali-
silica reactions, carbonation and Ca-leaching.  

ASR is a deleterious reaction between the silica (from aggregates) and alkalis in pore solution or 
portlandite (CH) (solid phase) in the presence of water to form ASR gel (e.g., calcium potassium 
silicate hydrate, calcium sodium silicate hydrate). The amount of ASR gel varies depending on the 
reaction temperature, type and proportions of the reacting materials, gel composition, gradation of 
aggregates, and other factors, among them silica content and the internal structure of aggregate are 
the most important. Swelling of this gel leads to stress development and potentially, cracking of 
concrete. It has long been known that irradiation affects concrete properties. Nuclear irradiation can 
significantly increase the reactivity of silica-rich aggregates.  

The application of some aspects of the digital twin concept to the problem of ASR of cementitious 
materials is presented in this chapter as a use case. First of all, an integrated approach to address 
the ASR of cementitious materials used for waste encapsulation is proposed. This approach includes 
a comprehensive laboratory and drum scale experiments, which assesses the ASR at various 
accelerated levels. Further, a simplified modelling framework to simulate ASR process is proposed, 
which is then used as the digital twin to predict the drum scale behavior. The main strategy with 
respect to modelling is that necessary parameters are obtained either based on literature or via 
calibration of material parameters with the above referenced laboratory experiments. As for the 
simulation of the drum scale, the goal is merely to predict and not to calibrate, at least in the first 
attempt. A purely geochemical approach has also been attempted. The objective is to explore semi-
quantitatively the ASR potential purely on the basis of the mixture composition.         

 

6.2 Methodology 

The diagram presented in Figure 6-1 shows an integrated approach including both experimental and 
modelling work to assess the ASR from lab to drum scale. The new approach is proposed in order 
to obtain a successful digital twin validation. This approach allows to provide sufficient inputs for 
modelling and digital twin. Lab scale experiment is for calibration of the model, while drum scale 
experiment is for blind prediction. 
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Figure 6-1 An integrated approach to assess ASR from lab to drum-scale. 

 

6.3 Mixture design 

In order to keep the system simple but still realistic, we propose to perform the experiments on mortar 
without the waste in this project. In this way, we will reduce the complexity of the modelling work. 
The combination of ASR and cement-waste interaction would introduce a new challenge for the 
proposed model in which we intend to use the existing chemo-mechanical constitutive laws for ASR 
without much change. Table 6-1 shows the compositions of 3 recipes, which are expected to give 
different expansion degrees due to ASR. These recipes are proposed but with slightly modified 
compositions suggested in ASTM standard 1260 [35] (due to the finer sand used). The recipe SIB 
used Sibelco M32 sand, which has been tested at Belgoprocess and classified as non-reactive sand. 
The recipe RCA used recycled concrete aggregates, which is expected to be more reactive. 
Furthermore, the recipe LI used 50% RCA and 50% Sibelco sand, but with the addition of LiNO3 to 
mitigate the ASR. The molar ratio of Li to cement alkalis (Na + K) is 0.74 [36, 37].    

 

Table 6-1 Mix compositions for ASR tests 

Mix Cement, 
kg/m3 

Water, kg/m3 M32 sand, 
kg/m3 

RCA, kg/m3 LiNO3, 
kg/m3 

Note 

SIB 635.5 298.7 1270.9 - - Non-reactive (lab 
+ drum tests) 

RCA 604.6 284.2 604.6 604.6 - Reactive (lab + 
drum tests) 

LI 604.6 284.2 604.6 604.6 5.3 Mitigation (lab 
tests only) 

 

6.4 Data pipeline 

For both the lab- and drum-scale campaigns a variety of sensors were used, and interfaced through 
different data acquisition systems to a local server that, depending on the experiment, communicated 
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the data to the cloud for the purpose of data storage, data analysis, dashboard and automated 
alerting (Figure 6-2).  

 

 

Figure 6-2 Logging architecture. 

 

6.5 Experimental setup 

6.5.1 Laboratory scale 

ASR tests are performed under moderate test conditions close to realistic service conditions are also 
applied. The test conditions are modified from ASTM standard 1293, which is used to evaluate the 
potential expansion due to any form of alkali-silica reactivity [38]. After 28 days curing at 20oC, the 
samples are placed inside a reactor at 38°C and relative humidity higher than 95% for 1 year as 
shown in Figure 6-3. Note that in this case, NaOH is added to the mix to obtain a Na2O equivalence 
of 1.25% by mass of the cement. Length and weight measurements are measured monthly on all 
samples, including the reference sample. After 360 days, the mechanical strengths of all samples 
are determined. Furthermore, manual length and weight measurements were also performed.  

 

 

Figure 6-3 Mortar bar placement in a controlled temperature chamber, at 38 oC, for a duration of 
one year. 
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Furthermore, autogenous shrinkage experiments were conducted on two mixtures, SIB and RCA, 
as presented in Table 6-1. The first mixture consisted solely of raw fine aggregate (Sibelco sand), 
while the other included 50% recycled fine aggregate. Both mixtures were prepared with a water-
cement ratio of 0.47 and an aggregate-cement ratio of 2.0. Each mortar composition was cast to 
undergo exposure to two different temperatures, 23 and 38 oC. For each of the four cases, two 
replicates were prepared to measure autogenous shrinkage. In order to replicate the moisture 
conditions of the recycled concrete aggregate (which is known to have intensive water absorption 
properties of up to 12%) as observed in drum scale experiments, the aggregate was conditioned 
beforehand. This conditioning process involved drying the recycled concrete aggregate and Sibelco 
sand in an oven at 110 ± 5 oC for one day. Subsequently, water was added to an air-tight bucket 
containing the aggregate to achieve an equilibrium moisture content of 6%, which was similar to the 
conditions in the drum scale experiments. The aggregate was conditioned under sealed conditions 
for one day. The mortar was then mixed according to the recommendations provided by ASTM C305-
09. Afterward, the autogenous shrinkage was measured for each mortar recipe based on the 
guidelines provided by ASTM C1698-09. 

6.5.2 Drum scale 

The recipes RCA and Sib (Table 6-1) were used to cast 4 drums on the same day as shown by 
Figure 6-4, of which 2 drums were placed in a temperature-controlled chamber set at 38 oC to 
accelerate the ASR. The other 2 drums were tested under ambient temperature. Each drum was 
filled up to 80% of the volume to leave space for technical installation and mimic the real situation in 
which a gap is created to accommodate the possible gas generation.  To continuously monitor, each 
drum was equipped with 8 vibrating strain gauges and 8 temperature sensors in the concrete. 
Additionally, a temperature and humidity sensor were installed at the lid of the barrel on the inside 
of the drum along with an ambient temperature on the outside of the drum. These sensors were read 
out continuously by a data acquisition unit. 

 

 

Figure 6-4 Overview of the experimental setup. In total 4 drums were equipped with sensors.  

The sensors inside the drum were mounted on a printed PLA structure (see Figure 6-5) to hold these 
vibrating strain gauges and temperature sensors one specifically chosen locations to maximize 
information gain. The temperature inside the isolated temperature chamber was controlled via an 
independent heating belt attached to the drum (see Figure 6-5).  
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Figure 6-5 Sensor placement inside the drum (left) and two drums in the temperature chamber 
(right). 

The relative locations for each of the strain gauge/temperature sensors are identical for each drum 
and are provided in Figure 6-6. For additional clarity, the relative coordinates with respect to the 
bottom and center of the barrel are provided in Table 6-2. Note that Figure 6-6 shows X and Z. 
Dimension Y is identical (Y=0) for each sensor location. 

  

Figure 6-6 3D render of the PLA structure inside the drum (left) and the schematic concerning the 
relative positioning of each sensor (right).  

 

Table 6-2 Sensor location per barrel relative to the bottom and center of the barrel. 

Sensor identifier X (mm) Y (mm) Z (mm) 

CJ -218 0 375 

RJ -234 0 325 

AC 0 0 625 

AB 0 0 375 

RL 234 0 575 

CK 218 0 375 

AK 250 0 375 



D7.5 Digital Twin, toolkit, models and use case example 

 

 Page 33/66 

 

RK 234 0 325 

6.6 Results 

6.6.1 Laboratory scale 

Figure 6-7 illustrates the progression of mass in the samples throughout the ASR experiments. In 
the initial stage, all three samples exhibited a rapid increase in mass within the first three months. 
This was subsequently followed by a gradual increase in mass. Notably, the RCA sample displayed 
the greatest mass increase, reaching up to 2.2% after being subjected to high humidity conditions at 
38 oC for 550 days. The addition of lithium resulted in a relative decrease in mass gain, suggesting 
the efficacy of mitigating ASR as the ASR gel absorbed a significant amount of water within its 
structure. Moreover, the increase in sample mass indicated continuous hydration of the mortar and 
water absorption by the aggregate, particularly in the case of recycled concrete aggregate which 
possesses a high-water absorption capacity of up to 12%.  

 

Figure 6-7 Mass evolution of samples in ASR experiments at 38 oC. 

Figure 6-8 illustrates the expansion of samples under accelerated ASR conditions at a temperature 
of 38 °C. The findings indicate that the RCA samples initially experienced shrinkage for a period of 
up to 3 months, followed by a substantial expansion phase. The expansion of RCA samples reached 
0.22% over a duration of 550 days and has not yet stabilized. The inclusion of LiNO3 resulted in a 
significant reduction in expansion by a factor of 5. In contrast, the SIB sample, classified as non-
reactive, exhibited the least expansion, with only 0.03% (after 550 days of testing), which is well 
below the ASTM standard threshold of 0.1% for assessing susceptibility to ASR. Monitoring of the 
ongoing tests is still underway. 

  

 



D7.5 Digital Twin, toolkit, models and use case example 

 

 Page 34/66 

 

 

Figure 6-8 Expansion of samples in ASR experiments at 38 oC. 

The ASR experimental results indicate a decrease in sample size during the initial stage. To validate 
this observation and gather information for modeling purposes (Chapter 6.7), autogenous shrinkage 
experiments were conducted. Figure 6-9 clearly illustrates that the RCA samples exhibited significant 
autogenous shrinkage during the first two weeks, followed by a period of gradual/stable shrinkage. 
The increase in temperature from 20 oC to 38 oC accelerates the shrinkage process, particularly in 
the first week. After four weeks, the autogenous shrinkage of the RCA sample reached 280 and 330 
microstrains for temperatures of 20 and 38 oC, respectively. The SIB sample displayed similar 
shrinkage characteristics, although with a much lower magnitude. The autogenous shrinkage of the 
SIB sample reached 57 and 150 microstrains for temperatures of 20 and 38 oC, respectively. It is 
important to note that the temperature appears to have a substantial impact on the autogenous 
shrinkage of the SIB sample compared to the RCA sample. 

      

 

Figure 6-9 Autogenous shrinkage strain evolution for the RCA mix. 

6.6.2 Drum scale 

Figure 6-10 illustrates the temperature changes observed in drum scale experiments over a period 
of 1 year. Drums 2 and 4 were exposed to ambient conditions, causing the temperatures to fluctuate 
in accordance with seasonal variations. During winter, temperatures could drop as low as 10 oC, 
while in summer, they reached highs of 23 oC for the thermocouple installed in the lid of the drums. 
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The temperature inside the drum remained relatively consistent across different measurement 
points. However, there was a discrepancy of approximately 5 oC between the temperatures recorded 
at the lid and inside the cementitious matrix, which proved challenging to explain. This disparity could 
be attributed to the ongoing heat release from mortar hydration or simply the varying performance 
of the temperature sensors in air conditions versus the cementitious matrix. 

Drums 1 and 3, on the other hand, were placed in a climate chamber with a controlled temperature 
of 38 oC, resulting in stable temperature levels. The temperatures measured at the lid aligned closely 
with the controlled temperatures. The temperature profiles of the cementitious matrix exhibited 
similar patterns to those observed in drums 1 and 3. Again, a 5 oC difference between the lid and 
matrix temperature was noted for drums 2 and 4. It should be noted that drum 1 experienced a 
temperature spike at 160 days due to inspection activities. In this instance, the drum was opened for 
a brief period of 15 minutes to assess the moisture state and surface cracking of the mortar. The 
impact of the temperature spikes can also be seen in strain measurements (Figure 6-11). 

 

  

  

Figure 6-10 Temperature evolution in the drum scale experiments. 
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Figure 6-11 Temperature corrected strain evolution in the drum scale experiments. 

Figure 6-11 shows the temperature corrected strain evolution at various sensor locations. Overall, 
the drums (2 and 3) that were exposed to ambient conditions show shrinkage. This implies that ASR 
effects have not yet been observed, which is expected given that these drums are not under 
accelerated conditions. However, the sensor AC in drum 2, i.e. at the core of the drum, showed 
reversal in strain evolution indicating a possible expansion mechanism, which is difficult to explain. 
Drum 1, which mainly contains non-reactive silica (SIB) and subjected to higher temperature 
surprisingly showed a shift towards expansion for some sensors. These are contrary to the lab scale 
experimental data that showed no appreciable ASR expansion for SIB material as seen in Figure 8-
8, with a maximum of 0.025% reached after 500 days, in comparison to 0.2% reached by RCA. Only 
after post characterization of drum 1 can a justifiable explanation be provided.  

ASR was expected to mainly happen in drum 3 as it is at higher temperature (38 °C) and with the 

most susceptible mix, i.e. RCA mix. However, drum 3 displayed predominantly shrinkage behavior, 
although there is a slow trend towards expansion after 150 days for some sensors. At this stage, it 
is hard to speculate to what extent ASR may have contributed to the shift towards expansion. It is 
postulated that the ASR process is delayed in drum 3 because of a lack of free water for ASR to 
manifest to its full potential. This is a plausible scenario as the dry RCA has the potential to also 
absorb water, which was seen in lab conditions. The absorption can be as high as 12% by weight. If 
this scenario exists in drum 3, it is possible that not enough water would be available for the ASR to 
develop or that it might take a significantly longer time for its effect to be seen. As it stands, the drum 
scale experiments are expected to continue until the end of 2024 allowing us to see the evolution of 
strains. Post characterization of drum 3 material will be carried out after dismantling, which might 
explain the observed behavior.     

6.7 Thermo- hydro-mechanical model for ASR 

From the laboratory experimental results, it is evident that RCA mixture is producing the maximum 
ASR induced expansion. Thus drum 3 would be the best choice to demonstrate the applicability of 
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the digital twin concept. Furthermore, from drum scale measurements, it is evident that temperature 
varies significantly during the first few days of hydration, following which a more or less steady state 
is attained and any fluctuations are attributed to the heater in the chamber. Secondly, as postulated 
in Chapter 6.6.2, the delay in ASR expansion in the drum may be attributed to a lack of moisture 
content to sustain ASR. Therefore, it is necessary to incorporate the effect of temperature and 
moisture field into the model. In this work, standard partial differential equations for heat transfer and 
moisture transfer are used. Whereas the mechanical model solves the standard momentum balance 
equation with linear elastic constitutive law as follows: 

∇. 𝛔 = 𝐛 (6-1) 
  

𝛔 = 𝐃: (𝛆 − 𝛆𝐀𝐒𝐑 − 𝛆𝐚𝐬 − 𝛆𝐭) (6-2) 

where 𝛆𝐀𝐒𝐑 is the ASR expansion strain tensor, 𝛆𝐚𝐬 is the autogenous shrinkage strain tensor and 𝛆𝐭 
is the thermal strain tensor, 𝛔 is the stress tensor and b is the body force vector. The ASR expansion 
strain relationship is based on Seignol et al. [39] and is fitted to the experimental data as described 
in Chapter 6.7.4. The autogenous shrinkage strain relationship is based on B4 model [40] and is 
fitted to the experimental data as described in Chapter 6.7.4. The thermal strain follows the standard 
linear relationship with change in temperature via the thermal expansion coefficient. 

Moisture transport equation follows the approach given in [41]: 

𝜕𝑤𝑒

𝜕ℎ

𝜕ℎ

𝜕𝑡
= 𝛻 ∙ 𝐷𝑚

𝜕𝑤𝑒

𝜕ℎ
𝛻ℎ + 𝑘𝑐𝑤𝑐

𝑑𝛼

𝑑𝑡
 

(6-3) 

 

Where 𝑤𝑒 is the evaporable water content, ℎ is the relative humidity, 𝑘𝑐 is a constant that refers to 
maximum water content that is consumed during hydration, 𝑤𝑐 is the weight content of cement in 

the mortar and 𝛼 is the degree of hydration, which follows the approach discussed in Phung et al. 
[42] and its parameters are fitted based on isothermal calorimetric experiments as shown in Table 
6-2. 𝐷𝑚 is based on Eq. (10) in [43] and detailed in  

6.7.1 Parameter estimation 

6.7.1.1 Inference of the AS model parameters using MCMC 

A MCMC inversion of sample-scale autogenous shrinkage measurement data, 𝜂𝑚𝑒𝑎𝑠,40 and  𝜂𝑚𝑒𝑎𝑠,20 

[μm/m], was performed to derive the 𝛼 [-], 𝛽 [-], 𝜏40 [days] and 𝜏20 [days] parameters of the following 
autogenous shrinkage analytical models 

𝜂𝑠𝑖𝑚,40 = 𝜂∞ [1 + (
𝜏40

𝑡
)

𝛼
]

𝛽

and 

𝜂𝑠𝑖𝑚,20 = 𝜂∞ [1 + (
𝜏20

𝑡
)

𝛼

]
𝛽

 

(6-5) 

where 𝑡 is measurement time in days since the start of the experiment, 𝛼 and 𝛽 are to be estimated 

jointly for the two measured time series and 𝜂∞ is set to 492.3735 μm/m. 

Here based on expert opinion the 𝜎𝑒,𝑖 in 𝚺𝑒 (see equation (5-3)) were set to 15 μm/m for 

measurements taken after day 5 and to 30 μm/m for measurements taken after day 5. Figure 6-13 
depicts the derived posterior parameter distribution while Figure 6-14 shows the associated 
predictions. It is seen that the 𝛼 and 𝛽 parameters are well resolved with approximately Gaussian 
marginal posterior distributions that show a relatively small spread. In contrast, the marginal posterior 
distributions of 𝜏40 and 𝜏20 are far from Gaussian-like and are much wider, with respect to their prior 
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distributions, than those of 𝛼 and 𝛽. The marginal posterior uncertainty of 𝜏20, in particular, is 
basically as large as its prior uncertainty. 

The derived maximum a posteriori solution (MAP) is then used to obtain the ASR measurement data 
used in the next chapter. In other words, the measurements obtained in the ASR tests are total 
strains, thus including autogenous shrinkage strains as well. But the autogenous shrinkage 
component must be removed to obtain purely ASR expansion data. Note that this approach had to 
be taken because autogenous shrinkage and ASR measurements were not carried out for equal 
durations and measurements were not taken with the same frequency so as to directly subtract 
measured AS strains from the total strains to obtain ASR strains. 

 

 

Figure 6-13: Marginal posterior distributions of the inferred autogenous shrinkage model 
parameters from sample-scale data. MAP denotes the maximum a posteriori solution, that is, the 

solution with maximum posterior density among the collected posterior parameter sets. 
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Figure 6-14: MAP predictions and 95% Posterior predictive uncertainty for the autogenous 
shrinkage model parameter inference. 

6.7.1.2 Inference of the ASR model parameters using MCMC 

The measurement errors associated with the sample-scale ASR measurement data, 𝜀 [-], are 
deemed to have a constant standard deviation, 𝜎𝑚𝑒𝑎𝑠 of 0.01 [-]. For the MCMC inversion, the ASR 

analytical model parameters and constant standard deviation of the residual errors, 𝜎𝑒 are then jointly 
derived, fixing the lower bound of 𝑝(𝜎𝑒) to 𝜎𝑚𝑒𝑎𝑠. The considered ASR analytical model is 

𝜀𝑠𝑖𝑚 = 𝜀∞

1 − 𝑒−𝑡/𝜏𝑐

1 + 𝑒(−𝑡+𝜏𝐿)/𝜏𝑐

1 − 𝜙

𝛿 + 𝑡
 

(6-6) 

where 𝑡 is measurement time in days since the start of the experiment, 𝜏𝐶 [days] and 𝜏𝐿 [days] are 
characteristic and delay times, respectively, 𝛿 and 𝜙 are empirical parameters and 𝜀∞ is set to 0.2483 
[-].  

The 𝜏𝐶, 𝜏𝐿, 𝛿, 𝜙 and 𝜎𝑒 parameters were inferred simultaneously, with the (required) additional 
constraint that 𝛿 > 𝜙. Figure 6-15 presents the obtained marginal posterior distributions while Figure 

6-16 depicts the resulting predictive uncertainty. It is observed that the 𝛿 and 𝜙 parameters are not 
well informed by the measurement data since their posterior uncertainty remains almost as large as 
their prior uncertainty (Figure 6-15). In contrast, the 𝜏𝐶, 𝜏𝐿 and 𝜎𝑒 parameters are reasonably well 
resolved with a rather small posterior uncertainty compared to their prior uncertainty. Furthermore, 
the log10(𝜎𝑒) marginal posterior distribution closely resembles a Gaussian distribution with a mean 
of -1.79 which corresponds to a value of 0.016 [-]. With respect to model predictions, the measured 
ASR data from day 15 on are overall well captured by the calibrated model (Figure 6-16). 
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 Figure 6-15: Marginal posterior distributions of the inferred ASR model parameters and standard 
deviation of the residual errors, derived from inversion of the sample-scale ASR measurement 

data. 
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Figure 6-16: MAP predictions and 95% Posterior predictive uncertainty for the ASR model 
parameter inference. 

6.7.1.3 Inference of the ASR model using variational Bayesian inference 

The evolution of the chemical strain over the course of time is modelled through the following 
algebraic equation. This is a slight variant of Equation 5-5. 

𝜀 = 𝜀∞

1 − 𝑒−𝑡/𝜏𝑐

1 − 𝑒−(𝑡−𝜏𝐿)/𝜏𝑐
 

(6-7) 

with the model parameters 𝜏𝑐 and 𝜏𝐿 to be identified. t is time and 𝜀 is the chemical strain (expansion), 
which are measured in a lab-scale experiment. The goal is to infer the parameters mentioned above 
using the Bayes’s theorem, which then enables us to predict the behaviour of ASR expansion in a 
probabilistic way, i.e. after obtaining posteriors of the parameters a predictive posterior for the strain 
can be computed. The idea is then to plug such a probabilistic model into a structural model (typically 
a finite element model) that is established to represent a drum-scale experiment.  

In Figure 6-17, the prior/posteriors of the model parameters as well as the noise precision is depicted. 
Respective mean values and standard deviations are presented, as well. Note that the mean value 
of the inferred noise precision (1.89e4) corresponds to a standard deviation of 0.0073. 
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Figure 6-17 Prior/posteriors of the model parameters and the noise precision 

Identifying model parameters in the form of probability distributions provides a probabilistic model, 
which can predict the behavior of the system in a probabilistic way. Figure 6-18 shows such a 
probabilistic predictive model response in comparison to the data. In addition, a deterministic 
identification has been performed and reported, which essentially is a least-square minimization of 
the model error (2) with respect to the model parameters. This is performed by means of the 
‘scipy.optimize’ package in Python. Notice that, the identified parameters obtained from this 
deterministic method coincide the mean values of the posteriors from the VB. 

 

 

Figure 6-18 – Model response (predictive) versus data 

We should recognize that a fundamental assumption of the presented Bayesian inference procedure 
is the additive noise model. This means, the error that we expect/formulate in the model response 
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does not depend on the magnitude of the model response itself. The dependency of the model error 
on the model response itself can be handled e.g. by a multiplicative noise model. This obviously has 
not been studied here, nevertheless, can be considered as a good continuation of this work for 
improving the accuracy and predictability of the calibrated model. 

6.7.2 Summary of material parameters 

Table 6-4 and  

Table 6-5 provide parameters for the material models.  
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Table 6-4.  

Heat transfer equation follow the approach given in [42]: 

𝐶𝑝𝑠𝜌𝑏

𝜕𝑇

𝜕𝑡
= 𝛻 ∙ 𝜆𝛻T + 𝑤𝑐𝑄∞ 

𝑑𝛼

𝑑𝑡
 

(6-4) 

where T is the temperature, 𝐶𝑝𝑠 is the specific heat capacity, 𝜌𝑏 is the bulk density, 𝜆 is the thermal 

conductivity, 𝑄∞ is the maximum heat of hydration. 

 

6.7.3 Domain, initial and boundary conditions  

All the four cylindrical drums are identical in dimensions and the mortar is filled up to 85% of the 
drum height. Typical dimensions of a drum are shown in Figure 6-12. 

 

 

 

 

Figure 6-12 2D axisymmetric schematic of a typical drum. 

 

The temperature boundary condition on all sides is as defined in Table 6-3: 

Table 6-3 Temperature boundary condition. 

Time (days) Temperature (°C) 

< 0.3 days No heat loss 

0.3 60 

1 70 

1.9 18 

2 39 
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The initial relative humidity is taken as 0.77 based on hydration kinetics calculations. Relative 
humidity on the top surface of the mortar is fixed at 1 because of the presence of water filled tray to 
maintain saturated conditions. 

As for the mechanical model, the bottom surface is vertically restrained, and the remaining faces are 
free to deform. The circumferential interface between the mortar and the steel drum is defined via a 
contact boundary with friction. 

 

6.7.4 Parameter estimation 

6.7.4.1 Inference of the AS model parameters using MCMC 

A MCMC inversion of sample-scale autogenous shrinkage measurement data, 𝜂𝑚𝑒𝑎𝑠,40 and  𝜂𝑚𝑒𝑎𝑠,20 

[μm/m], was performed to derive the 𝛼 [-], 𝛽 [-], 𝜏40 [days] and 𝜏20 [days] parameters of the following 
autogenous shrinkage analytical models 

𝜂𝑠𝑖𝑚,40 = 𝜂∞ [1 + (
𝜏40

𝑡
)

𝛼
]

𝛽

and 

𝜂𝑠𝑖𝑚,20 = 𝜂∞ [1 + (
𝜏20

𝑡
)

𝛼

]
𝛽

 

(6-5) 

where 𝑡 is measurement time in days since the start of the experiment, 𝛼 and 𝛽 are to be estimated 

jointly for the two measured time series and 𝜂∞ is set to 492.3735 μm/m. 

Here based on expert opinion the 𝜎𝑒,𝑖 in 𝚺𝑒 (see equation (5-3)) were set to 15 μm/m for 

measurements taken after day 5 and to 30 μm/m for measurements taken after day 5. Figure 6-13 
depicts the derived posterior parameter distribution while Figure 6-14 shows the associated 
predictions. It is seen that the 𝛼 and 𝛽 parameters are well resolved with approximately Gaussian 
marginal posterior distributions that show a relatively small spread. In contrast, the marginal posterior 
distributions of 𝜏40 and 𝜏20 are far from Gaussian-like and are much wider, with respect to their prior 

distributions, than those of 𝛼 and 𝛽. The marginal posterior uncertainty of 𝜏20, in particular, is 
basically as large as its prior uncertainty. 

The derived maximum a posteriori solution (MAP) is then used to obtain the ASR measurement data 
used in the next chapter. In other words, the measurements obtained in the ASR tests are total 
strains, thus including autogenous shrinkage strains as well. But the autogenous shrinkage 
component must be removed to obtain purely ASR expansion data. Note that this approach had to 
be taken because autogenous shrinkage and ASR measurements were not carried out for equal 
durations and measurements were not taken with the same frequency so as to directly subtract 
measured AS strains from the total strains to obtain ASR strains. 
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Figure 6-13: Marginal posterior distributions of the inferred autogenous shrinkage model 
parameters from sample-scale data. MAP denotes the maximum a posteriori solution, that is, the 

solution with maximum posterior density among the collected posterior parameter sets. 
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Figure 6-14: MAP predictions and 95% Posterior predictive uncertainty for the autogenous 
shrinkage model parameter inference. 

6.7.4.2 Inference of the ASR model parameters using MCMC 

The measurement errors associated with the sample-scale ASR measurement data, 𝜀 [-], are 
deemed to have a constant standard deviation, 𝜎𝑚𝑒𝑎𝑠 of 0.01 [-]. For the MCMC inversion, the ASR 

analytical model parameters and constant standard deviation of the residual errors, 𝜎𝑒 are then jointly 
derived, fixing the lower bound of 𝑝(𝜎𝑒) to 𝜎𝑚𝑒𝑎𝑠. The considered ASR analytical model is 

𝜀𝑠𝑖𝑚 = 𝜀∞

1 − 𝑒−𝑡/𝜏𝑐

1 + 𝑒(−𝑡+𝜏𝐿)/𝜏𝑐

1 − 𝜙

𝛿 + 𝑡
 

(6-6) 

where 𝑡 is measurement time in days since the start of the experiment, 𝜏𝐶 [days] and 𝜏𝐿 [days] are 
characteristic and delay times, respectively, 𝛿 and 𝜙 are empirical parameters and 𝜀∞ is set to 0.2483 
[-].  

The 𝜏𝐶, 𝜏𝐿, 𝛿, 𝜙 and 𝜎𝑒 parameters were inferred simultaneously, with the (required) additional 
constraint that 𝛿 > 𝜙. Figure 6-15 presents the obtained marginal posterior distributions while Figure 

6-16 depicts the resulting predictive uncertainty. It is observed that the 𝛿 and 𝜙 parameters are not 
well informed by the measurement data since their posterior uncertainty remains almost as large as 
their prior uncertainty (Figure 6-15). In contrast, the 𝜏𝐶, 𝜏𝐿 and 𝜎𝑒 parameters are reasonably well 
resolved with a rather small posterior uncertainty compared to their prior uncertainty. Furthermore, 
the log10(𝜎𝑒) marginal posterior distribution closely resembles a Gaussian distribution with a mean 
of -1.79 which corresponds to a value of 0.016 [-]. With respect to model predictions, the measured 
ASR data from day 15 on are overall well captured by the calibrated model (Figure 6-16). 
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 Figure 6-15: Marginal posterior distributions of the inferred ASR model parameters and standard 
deviation of the residual errors, derived from inversion of the sample-scale ASR measurement 

data. 
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Figure 6-16: MAP predictions and 95% Posterior predictive uncertainty for the ASR model 
parameter inference. 

6.7.4.3 Inference of the ASR model using variational Bayesian inference 

The evolution of the chemical strain over the course of time is modelled through the following 
algebraic equation. This is a slight variant of Equation 5-5. 

𝜀 = 𝜀∞

1 − 𝑒−𝑡/𝜏𝑐

1 − 𝑒−(𝑡−𝜏𝐿)/𝜏𝑐
 

(6-7) 

with the model parameters 𝜏𝑐 and 𝜏𝐿 to be identified. t is time and 𝜀 is the chemical strain (expansion), 
which are measured in a lab-scale experiment. The goal is to infer the parameters mentioned above 
using the Bayes’s theorem, which then enables us to predict the behaviour of ASR expansion in a 
probabilistic way, i.e. after obtaining posteriors of the parameters a predictive posterior for the strain 
can be computed. The idea is then to plug such a probabilistic model into a structural model (typically 
a finite element model) that is established to represent a drum-scale experiment.  

In Figure 6-17, the prior/posteriors of the model parameters as well as the noise precision is depicted. 
Respective mean values and standard deviations are presented, as well. Note that the mean value 
of the inferred noise precision (1.89e4) corresponds to a standard deviation of 0.0073. 
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Figure 6-17 Prior/posteriors of the model parameters and the noise precision 

Identifying model parameters in the form of probability distributions provides a probabilistic model, 
which can predict the behavior of the system in a probabilistic way. Figure 6-18 shows such a 
probabilistic predictive model response in comparison to the data. In addition, a deterministic 
identification has been performed and reported, which essentially is a least-square minimization of 
the model error (2) with respect to the model parameters. This is performed by means of the 
‘scipy.optimize’ package in Python. Notice that, the identified parameters obtained from this 
deterministic method coincide the mean values of the posteriors from the VB. 

 

 

Figure 6-18 – Model response (predictive) versus data 

We should recognize that a fundamental assumption of the presented Bayesian inference procedure 
is the additive noise model. This means, the error that we expect/formulate in the model response 
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does not depend on the magnitude of the model response itself. The dependency of the model error 
on the model response itself can be handled e.g. by a multiplicative noise model. This obviously has 
not been studied here, nevertheless, can be considered as a good continuation of this work for 
improving the accuracy and predictability of the calibrated model. 

6.7.5 Summary of material parameters 

Table 6-4 and  

Table 6-5 provide parameters for the material models.  

  



D7.5 Digital Twin, toolkit, models and use case example 

 

 Page 52/66 

 

Table 6-4 Material parameters of RCA mortar. 

Parameters Values 

Hydration parameters 

𝑄∞ 530 (J/g) 

𝜏𝑐 0.3332 (d) 

𝛽ℎ 0.3189 

𝑤𝑐 604.6 (kg/m3) 

𝐸𝑎/𝑅 4570 (K) 

Heat transfer model parameters 

𝜌𝑏 2098.5 (kg/m3) 

𝐶𝑝𝑠 1100 (J/kg/K) 

𝜆 0.6 (W/m/K) for t<0.5 (d), else 1.5 (W/m/K) 

Moisture transfer model parameters 

𝜕𝑤𝑒

𝜕ℎ
 

Olsson et al. [43] 

𝑘𝑐 0.25 (kg/kg) 

𝑎𝑚 2.60E-13 

𝑏𝑚 9.48 

𝐷𝑚𝑡ℎ 1.71E-07 (m2/s) 

ℎ𝑡ℎ 0.64 

𝑣𝑠  4.95×10-2 (kg/m3) 

Linear elastic 

Young’s modulus, E 29.6 (GPa) 

Poisson’s ratio, 𝜈 0.22 

Compressive strength, 𝑓𝑐 41 (MPa) 

Tensile strength, 𝑓𝑡 4.1 (MPa) 

Coefficient of thermal expansion, 𝛼𝑇  7×10-6 (1/K) 

Autogenous shrinkage 

𝜖𝑎𝑠∞ 492.37×10-6 

𝜏𝑎𝑠 35 (d) 

𝛼𝑎𝑠 0.4 

𝛽𝑎𝑠 -0.7 

𝐸𝑎𝑠/𝑅 8937 (K) 

ASR expansion parameters 

𝜀∞ 7.15×10-3 

𝜏𝑐 62.15 (d) 

𝜏𝐿 127.4 (d) 

𝜙 22.31 

𝛿 167.4 

𝑚 8 

𝛽𝑐 2.0 
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Table 6-5 Steel properties. 

 Values 

E 193 (GPa) 

𝜈 0.3 

𝜌𝑏 7840 (kg/m3) 

𝜆𝑇 45 (W/m/K) 

𝐶𝑝𝑠 490 (J/kg/K) 

𝛼𝑇  11×10-7 (1/K) 

 

6.7.6 Modelling results 

The model performance is examined against the measured temperature and strains at various 
locations in drum 3 presented in Chapter 6.6. Figure 6-19 shows a comparison of simulated versus 
measured behavior of temperature. In general, the overall behavior of the model is reasonably well 
captured, in particular the peak temperature.  

 

(a) 

 

(b) 

Figure 6-19 Temperature comparisons: (a) from axial strain sensors, (b) from radial strain sensors. 
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Figure 6-20 shows the simulated moisture evolution in terms of relative humidity. The moisture 
evolution from 0 to 28 days is imposed in the model based on hydration calculations. So prediction 
apples to > 28 days, where further consumption of water by hydration continues at all locations 
except at the sensor AC, which is close to the moisture boundary where the relative humidity is held 
constant at 1.0. It is not possible to validate the results obtained. However, it offers a qualitative 
understanding of evolution.  

 

 

Figure 6-20 Simulated moisture evolution. 

 

Figure 6-21 and Figure 6-22 present a comparison of simulated vs. measured strains in the axial 
and radial directions, respectively, at various locations in drum 3. In general, there is an 
overestimation of total strains in all directions during the peak of the hydration phase (t < 2 days). 
The mechanical behavior during this phase is difficult to capture because of the evolving system. 
Beyond 2 days, the comparisons are generally good, with the exception being the simulated axial 
strain behavior after 200 days for both AB and AC sensor locations. The simulated axial strain at AC 
shows a gradual shift to positive strains because of higher ASR strain kicking in. This is also the 
trend with AB but stabilizes after 300 days. These behaviors are consistent with the simulated 
relative humidity evolution at locations AB and AC (Figure 6-20) in the sense that an increase in the 
relative humidity results in an increase in the ASR expansion strain. Similarly, strains beyond 450 
days at locations other than AB and AC shows a continued decrease (shrinkage), which are directly 
linked to the simulated relative humidity decrease owing to water consumption by residual hydration 
process and coupled with very low moisture diffusion from the top surface of the mortar. Whereas, 
experimentally, after 100 days, both radial and circumferential strains show a slight increase 
suggesting potential influence of ASR. 
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Figure 6-21 Axial strain comparison. 

 

 

 

Figure 6-22 Radial strain comparison. 

 

Given that no damage mechanics is considered in the coupled formulation, as a first approximation, 
the potential for damage is examined by checking if the simulated stresses in the domain exceed 
the tensile strength of the material. Figure 6-23 (left) confirms that axial stresses do not exceed the 
tensile strength anywhere in the domain. Whereas Figure 6-23 (right) shows two distinct regions 
where radial stresses exceed the tensile strength. However, the tensile radial stresses are mainly 
due to the autogenous shrinkage strain. It is thus concluded that the model do not suggest ASR 
related damage, at least for the simulated period.  

A broader conclusion is that the adopted thermo-hydro-mechanical model does provide qualitatively 
good trends and forms a good candidate to develop a meta model. 
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Figure 6-23 Simulated axial (left) and radial stress (right) distribution at 450 days exceeding tensile 
strength of the material (0 or blue: regions that do not exceed 𝑓𝑡; 1 or red: regions that exceed 𝑓𝑡). 

 

6.8 Geochemical model for ASR 

Chemical models of cementitious materials based on a thermodynamic approach can give 
estimations of whether e.g. alkali-silica reactions (ASR) are to be expected or not as a function of 
cement composition parameters.  

The issue of ASR in cement-based materials has been studied for a long time. It is a deleterious 
reaction between the alkaline pore solution of concrete and various metastable forms of silica 
contained in many natural and synthetic aggregates, according to Rajabipour et al. [44]. Silica in 
these reactive aggregates can be dissolved in the high pH pore solution and then recombine with 
calcium and alkalis present in pore solution to form into silicate hydrates. These hydrates, which can 
be of variable stoichiometric composition, are the so-called ASR gel. This gel is typically hygroscopic 
in the sense that it tends to swell upon water absorption. If swelling is extensive, pores and 
microcracks can be filled by these gels and drive the formation of further microcracks near the gel 
sources and ultimately macrocracks, affecting the stability of the structural concrete. 

ASR is a result of several concatenated reactions that involve (1) dissolution of metastable silica, (2) 
formation of nano-colloidal silica sol, (3) gelation of the sol, and (4) swelling of the gel [44]. Of these, 
dissolution of the silica is considered the rate limiting factor and therefore can be assumed to control 
the rate of ASR. Silica dissolution is faster the higher the pH and the larger the temperature, which 
are factors that are often considered in accelerated ASR tests. Swelling of the gel does not only 
depend on the chemical reactivity but also on the availability of moisture and therefore on the 
transport properties of concrete to allow a constant supply of moisture and reactants through its 
porous matrix.  

Given the complexity of the coupled THCM processes at play in ASR, it is not surprising that 
predictive modelling of this durability issue is still a matter of intense research. Rajabipour et al. [44] 
reviewed the state of the art in ASR modeling and described different categories based on the 
method, which can be numerical or analytical (empirical models are the most widespread for 
engineering applications), but also analyze structural or material levels, and considering some or all 
of the physical processes at play. 

In the past, thermodynamic modelling has been used in an attempt to predict favorable chemical 
conditions for ASR development in concrete. Kim and Olek (2014) [45] estimated solubilities for two 
hypothetical ASR products (K2Ca4Si6O17·10.5H2O and Na2Ca4Si6O17·10.5H2O) and used them to 
predict the sequence of ASR. Guthrie and Carey (2015) [46] considered available thermodynamic 
data for proxy minerals of ASR products (magadiite, i.e., NaSi7O14·4.5H2O for an alkali-silicate 
ASR product, and okenite, i.e. CaSi2O5·2H2O, for a high calcium silicate ASR product). In both 
studies, the lack of experimental solubility measurements and derived solubility products prevented 
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a more reliable prediction. More recently, substantial efforts have been reported for the determination 
of thermodynamic data for different types of ASR products. Shi and Lothenbach [47] reported 
thermodynamic data for K-shlykovite, Na-shlykovite and ASR-P1, or K0.52Ca1.16Si4 
O8(OH)2.84·1.5H2O). They used that data to predict the effect of Ca/Si on the formation of ASR 
products. They showed, using experiments and thermodynamic modelling, that a K or Na alkalis are 
essential to initiate ASR, within an optimum range. For low alkali concentrations, C-S-H forms 
instead of ASR products, while for too high concentrations, C-S-H is also formed. Only for 
concentrations within a certain range do ASR products form (between 0.2 and 0.5 M and with Ca/Si 
between 0.1 and 0.4), always in the presence of calcium [48]. These ASR products have an average 
atomic ratio of Ca/Si and (Na + K)/Si of 0.21–0.23 and 0.21–0.34, respectively, and this is regardless 
of their amorphous or crystalline nature [49]. Jin et al. (2023) [50] further studied these ASR products 
and estimated the temperature-dependent thermodynamic properties of Na- or K-shlykovite phases. 

Despite the significant advances in the determination of solubility constants for thermodynamic 
modelling of ASR in cement-based materials, one of the remaining difficulties lies in the complexity 
of the transport of substances (alkalis, calcium, moisture, silica) within the microstructure. This 
makes the use of macroscopic thermodynamic models more difficult, since the limited availability of 
one of these ingredients due to transport restrictions between the aggregate microstructure (which 
is usually where cracks filled with ASR form) and the cementitious matrix. 

Recently, Qiu et al. [51] developed a 3D reactive-transport lattice model of ASR in the early stage at 
micro-scale, with a model domain of 100 × 100 × 100 μm3. This domain included an interface 
between cement paste and a reactive aggregate and considered explicitly the cement hydrated 
distribution in the cement paste fraction. They used a combination of thermodynamic equilibrium and 
kinetically controlled reactions to simulate the dissolution of silica in the aggregate, dissolution of 
portlandite and C-S-H in the cement paste and finally the formation of ASR products. They 
considered mainly K-shlykovite (KCaSi4O8(OH)3 ⋅ 2.9H2O, KSH) and tobermorite as reaction 
products. For K-shlykovite, the equilibrium constant was obtained through sensitivity analysis instead 
of the values derived in Shi and Lothenbach [48]. For the rest of reactions, they used Cemdata18. 
They found that the silica dissolution rate is one of the key controlling factors, as suggested before 
by other authors and that the three necessary conditions for ASR are extra Ca2+ buffered by CH or 
C-S-H in the cement paste, a high concentration of dissolved silica, and a threshold alkali 
concentration. They confirmed the prominent role of calcium, without which ASR would stop very 
soon. However, at high Ca concentrations, they reported that a ‘pozzolanic effect’ would cause that 
most of the dissolved silica is consumed by tobermorite formation. Even at the micro-scale, some of 
the key features of ASR could not be considered in Qiu et al. (2022) [51], such as the important role 
of microcracks within the aggregates in the formation of ASR products. 

From this review, it may be concluded that reactive transport modelling or thermodynamic modelling 
of ASR in concrete at macroscopic scale is not yet available in the literature, not only due to the lack 
in thermodynamic data of all phases involved in the degradation sequence, but also due to the multi-
scale nature of the process.  

Despite these limitations, thermodynamic modelling of ASR can still be used to provide insight into 
the potential of ASR development in different cement mixes, and this will improve with more 
thermodynamic data becoming available in the future. Even though prediction of the progress of 
ASR reactions is not just dependent on chemical equilibrium conditions alone, thermodynamic 
modelling can still be used to give an indication of whether the ASR process is likely to occur in 
cement material with a certain composition.  

To illustrate this, we have constructed a thermodynamic model based on recent literature on cement 
chemistry and ASR thermodynamic data [50-52]. This model contains the set of chemical reactions 
from the Cemdata18 database in combination with the Na-shlykovite and K-shlykovite 
thermodynamic data with adapted temperature dependency of the reaction constants as described 
by Jin et al. [50]. 
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The model was set up in the ORCHESTRA framework and requires as input the bulk composition of 
a cementitious material in terms of total reactive amounts of CaO, SiO2, Al2O3, NaO, KO, S, and C 
(Figure 6-24). 

 

Figure 6-24 Example of selected input substances and parameters 

 

With the input information the model calculates the distribution of elements, or master species over 
all possible chemical forms (e.g. aqueous species, precipitated phases, solid solutions, adsorbed 
species, gaseous species, etc.) under chemical equilibrium conditions. This includes the amounts of 
solid phases that are involved in ASR reactions. The calculated presence of such ASR phases at 
equilibrium, as a function of the input chemical conditions, can be used as an indicator for the 
possible occurrence of ASR reactions in the long term.  

The figures below (Figure 6-25, Figure 6-26) show an example of model output for the calculated 
formation of ASR phases (indicated in light green) as a function of a range of matrix composition in 
terms of Ca, Si, Na, K concentrations. 
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Figure 6-25 Calculated distribution of Ca over different solid phases as a function of total K and 
total Si present in the system. The formation of ASR phase K-shlykovite is indicated in light green. 

 

As described above, the occurrence of the separate ASR phases does not simply increase with the 
amounts of K or Na present, because of competition with Na and K-containing C-S-H phases.   
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Figure 6-26 Calculated distribution of Ca over different solid phases as a function of total Na and 
total Si present in the system. The formation of ASR phase Na-shlykovite is indicated in light 

green. 

 

The thermodynamic model can be used to predict/estimate the formation of ASR phases as a 
function of the bulk composition in terms of Ca, Si and alkali content of the cementitious material 
used in the experiments. From the results shown in Figure 6-27 follows that the stability of the ASR 
phases (indicated in orange) strongly depends on the ration between reactive Ca and Si in the 
system. For Si the reactive amount is only a small fraction of the total amount present which has to 
be estimated as it cannot be determined directly. The calculated results are quite sensitive for this 
estimation. For Ca generally the total amount present in the cement fraction is assumed to be 
reactive. (maximum concentration in figure n). In practice this reactivity could be less, or reduce over 
time by formation of calcite in contact with air.  
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Figure 6-27 Calculated stability of ASR phases as a function of total reactive concentrations (mol/m3) 
Ca and Si. Orange areas indicate conditions where ASR phases are predicted to be stable. The 
dashed box indicates the estimated combined ranges of reactive concentrations of Ca and Si for 
cement, RCA and sand fractions in the drum scale experiments. 
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7 Summary and challenges 

7.1 Contributions 

This report presents the efforts of WP 7.4 consortium towards developing a proof of concept of 
certain aspects of digital twin technology for the predisposal management of radioactive waste, 
especially for low and intermediate level waste packages. It was rather clear from the start that the 
exact definition of DT principally depended on project strategy and specific applications, for example, 
the type of waste and/or degradation mechanism. The fundamental tenet is that the DT requires a 
dual representation of the real world, although not mandatory that they coexist at the same time. In 
particular, an intelligent digital twin can provide information about the real assets from the past, 
identify the current state and even predict future performance.  

General contributions to the PREDIS project are summarized below: 

a) One possible representation of DT in the context of waste package deterioration mechanisms 
has been identified. 

b) A proof of concept of a DT approach for the evolution of waste package is exemplified via a 
prototype DT dash board that runs on a geoml platform.  

c) Implementation of two key processes viz., cement hydration and carbonation of cemented 
waste packages have been successfully demonstrated via a DT dashboard. In particular, the 
idea of waste integrity parameter as a measure has been proposed, which can be extended 
to other processes. 

d) Recourse to meta models become inevitable from DT perspective. A neural network based 
surrogate model to address organic degradation and metallic corrosion has been presented. 
Training a NN model from a complex geochemical model GEM-SELEKTOR has been 
detailed. In particular, the power of NN model to run 1 million cases for global sensitivity 
analysis in under 2 seconds is highlighted. 

e) A key element in any DT framework is parameter estimation technique in order to improve 
the overall reliability of a given model. Theoretical background on parameter estimation and 
recommendations for the use of Bayesian inference approach in the DT framework is 
discussed, with a special focus on MCMC and variational inference Bayesian techniques.  

Whilst the above contributions catered to various aspects of DT work flow, a specific objective of 
task 7.4 was to explore a real life example of DT for waste package application. For this, ASR 
pathology was chosen as a candidate. The following summarizes specific conclusions related to DT 
for ASR pathology. 

a) An integrated experimental-numerical programme for ASR pathology has been successfully 
implemented. 

b) Experimental work covered both laboratory experiments on ASR expansion and autogenous 
shrinkage and four drum scale experiments on various cement recipes to simulate ASR 
process under both natural and accelerated conditions. Accelerated conditions were 
necessary in order to realize results within the time frame of PREDIS project. 

c) For both the lab- and drum-scale experiments a variety of sensors were used, and interfaced 
through different data acquisition systems to a local server that, depending on the 
experiment, communicated the data to the cloud for the purpose of data storage, data 
analysis, dashboard and automated alerting.   

d) Laboratory scale experiments clearly demonstrated that a specific cement formulation based 
on recycled concrete aggregate has the highest potential for forming ASR. 

e) However, even after a year, the drum scale experiments for all recipes still predominantly 
show autogenous shrinkage. This does not imply that ASR expansion is not occurring, but 
this could be because of a rather slow ASR kinetics. It is postulated that RCA, which can 
potentially absorb water available for hydration, might have caused depletion of free water, 
resulting in slow ASR kinetics. The drum scale experiments are planned to continue beyond 
the life of PREDIS project. 
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f) A coupled thermo-hydro-mechanical model for ASR process based on existing approaches 
has been successful implemented. Though a simple high fidelity model, the number of 
parameters of the coupled model is significant, requiring us to focus on a very few parameters 
for parameter estimation using Bayesian inference. 

g) The model is capable of simulating reasonable qualitative/quantitative trends for temperature 
and strains. Although, it is very difficult to capture the behavior accurately during the hydration 
phase when the cemented system is rapidly evolving. Both the drum scale experiments and 
associated numerical predictions are captured on PREDIS DT dashboard. 

h) One forward run of the high fidelity model takes approximately 45 minutes. This however is 
not a problem from DT point of view because processes such as ASR are long term and 
computational burden will not be a limiting factor. However, currently progress is being made 
with the development of meta model using MCMC framework.   

7.2 Challenges 

Several challenges were encountered during the execution of the project: monitoring process on 
long time scales, transferring models from lab to waste package scale, combining different models 
and feedback between complex processes into a Digital Twin. More specifically,  

a) Preliminary results from ASR experiments indicate that laboratory scale models are difficult 
to extrapolate to the drum scale – small scale experiments showed expansion of the cement 
matrix after a short period of time, whereas drum scale experiments showed shrinkage only 
so far. Such is the complexity even with a simple system such as cement mortars. Thus, the 
complexity to be confronted in the case of real cemented waste forms would be formidable. 
Furthermore, there are not well validated yet simple phenomenological models even for a 
single system as cement mortar with RCA. Therefore, one can expect challenges in 
developing models for real waste forms and then to progress into developing meta models 
that can be integrated into a digital twin concept.  

b) Complex geochemical and mechanical processes may occur in the heterogeneous 
cementitious waste drums.  A surrogate model based on machine-learning algorithms is 
developed to predict geochemical interactions in waste degradation processes over a 
century, simplifying full-scale geochemical models, which were used to generate learning 
and testing input/output samples for the ML surrogate model. The model assesses the 
sensitivity of reaction rates for different materials (organic materials, iron (Fe), aluminum (Al), 
zinc (Zn), and brass) within cementitious waste packages, taking into account several waste 
degradation mechanisms. Validation of complex models is difficult with such a sparse 
experimental database. 

c) From sensor’s performance point of view, there are no experimental validations to confirm 
that the strain measurements are reliable. For example, can the sensors lose contact with 
the cemented waste during shrinking or expansion process? After pouring the concrete, the 
sensors will remain in the same location as originally intended, even though the sensors are 
mounted on rigid fixtures. It is unclear yet if the sensor data is reliable under extreme 
conditions such as high hydration temperature and high relative humidity, typically expected 
under realistic conditions. 

d) To validate any model, a comprehensive experimental campaign has to be undertaken with 
at least simulated waste form, including quantifying uncertainties. They should include 
enough experiments to cater to both calibration and validation.  
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