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Executive Summary 

Due to recent technological developments, the fields of artificial intelligence and machine learning 

methods (ML) are growing at a very fast pace. The DONUT scientific community has recently started 

using ML for a) accelerating numerical simulations, b) multiscale and multiphysics couplings, c) 

uncertainty quantification and sensitivity analysis. There are first evidences, which suggest an overall 

acceleration of calculations between one to four orders of magnitude. Within DONUT a benchmark was 

designed to coordinate activities and test a variety of ML techniques relevant to geochemistry and 

reactive transport. It aimed at benchmarking the major geochemical codes, at generating high quality 

data for training/validation of existing/new ML methodologies and at providing basic guidelines about 

the benefits and drawbacks of using ML techniques. A joined publication will be submitted in the 

upcoming weeks to disseminate the conducted work. 
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1. INTRODUCTION 

In addition to the specific work which was conducted by each partner, a specific outcome of DONUT 

project is the definition of benchmarks that will be use both inside DONUT and outside to foster 

interactions. While international benchmarks initiative are existing (Bildstein et al., 2021; Birkholzer et 

al., 2019; Steefel et al., 2015), the goal here is to define benchmarks of methods and tools to quantify 

efficiency and added-value in terms of :  

• increase of knowledge (e.g. better physical representation, integration of couple processes, 
exchange between viewpoints of different disciplines)) 

• accuracy, robustness, computational cost,  

• robustness of scale-transition approaches 

• ability to manage uncertainty and sensitivity analyses 

Recently, Bildstein et al. (2021) in a guest editorial to the subsurface environmental simulation 

benchmarks special issue mentioned emerging benchmarking opportunities. Amongst others, machine 

learning was identified. Indeed it is considered as a recent disruptive technology in the field of reactive 

transport and will possibly unlock the next generation of simulation that require high demanding CPU 

time (Leal et al., 2017). The high computing cost associated with chemical equilibrium calculations is 

considering as the most demanding one in comparison to fluid flow or heat transfer. To circumvent this 

issue the use of surrogate model provides promising perspectives (Laloy and Jacques, 2019; 

Prasianakis et al., 2020). Therefore, having a benchmark that tackle this issue will be very useful. In that 

context DONUT has defined a benchmark relating to machine learning and geochemistry.  This latter 

aims at providing a point of reference for testing and addressing the challenges relevant to: (i) producing 

high quality training datasets, which can be used by all available ML techniques, (ii) using Deep neural 

network learning, Polynomial Chaos Expansion and Gaussian processes to learn from the generated 

data, (iii) testing the accuracy of predictions for geochemical calculations, reactive transport and 

uncertainty analysis. The philosophy of the benchmark is described in the paragraph 2. It is worth 

noticing that two geochemical system will be investigated: one related to cement based material 

degradation and one related to uranium sorption on clay materials. It therefore provides a clear link 

to the ACED and FUTURE WPs.  
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2. BENCHMARK RELEVANT TO MACHINE LEARNING AND 
GEOCHEMISTRY 

2.1 Benchmark philosophy 

Machine learning (ML) is a subset of artificial intelligence with special focus on learning from 

experimental/numerical data and subsequently representing the correlations of the data in 

multidimensional variable spaces. This is achieved by using a variety of mathematical models, which 

result in methodologies like deep neural network learning, polynomial chaos expansion and Gaussian 

processes. In the context of radioactive waste management, ML may be used to create surrogate 

models, which are computationally more efficient than the full physical models. For example, it can be 

used to accelerate the geochemical calculations used in reactive transport calculation (Laloy and 

Jacques, 2019; Prasianakis et al., 2020). An illustrative example is shown in figure 1. Typically, in 

reactive transport simulations the transport solver is much faster to compute compared to the 

thermodynamic and chemistry solver, with the latter being responsible for 90-99% of the overall 

computational time. The reason for that is that the thermodynamic solver typically involves the iterative 

solution of several equations until convergence for a single computational grid point, while transport 

equations are less demanding for the same grid point. With chemistry being the bottleneck, effort has 

to be spent to accelerate that part of the code. Using machine learning a surrogate model for the 

chemistry may be created. Once trained and coupled with the transport solver, significant speed-ups 

are obtained. These models require a training dataset, which is always produced by the full physical-

chemical numerical code. The number of training points depends on the number of variables, which 

defines the input multidimensional space. Once the training dataset is available, the training phase takes 

place where the ML algorithm learns from the data and is able to represent complex data correlations. 

After the training is finished, the ML algorithm is ready to be used for predictions for a combination of 

parameters, which does not belong to the training dataset, which however lies within the range set from 

the minimum and maximum values of the input parameters existing in the training dataset. The accuracy 

of the predictions highly depends a) on the size and quality of the training dataset (typically the larger 

the better), b) on the ML algorithm that was used, and c) on the tuning of the hyper-parameters of the 

each ML algorithm. Hyper parameter is a parameter whose value is used to control the learning process.     

 

 

 

 

 

Figure 1: In typical reactive transport simulations, thermodynamics and chemistry consume most of the 
computational time. Coupling of carefully trained surrogate models provides an overall acceleration of 
the simualation between one to four orders of magnitude (Laloy and Jacques, 2019; Prasianakis et al., 
2020) 

This benchmark aims in providing a point of reference for testing and addressing the challenges relevant 

to: 

• Streamline the production of high-quality consistent training datasets, using the major 
geochemical solvers. Setting the specifications such that the datasets may directly be used by 
all available and future ML techniques.  

• Using Deep neural network learning, Polynomial Chaos Expansion and Gaussian processes 
and other techniques to learn from the generated data. 

• Testing the accuracy of predictions for geochemical calculations in a few systems of interest. 
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2.2 Benchmark Roadmap and main milestones 

This benchmark exercise is completed and a manuscript is available, currently under finalization. The 

history and timeline of the benchmark is described below and illustrated in figure 2:  

• June to December 2021: System of interest specification and definition of the different 
benchmark levels of complexity. This action is done.  

• January 2022 to December 2022: Production of the training sets. This action is done 

• May 2022 to June 2023: Resolution of the benchmarks by the different teams 

• November 2022: 1st Workshop to discuss geochemical systems and preliminary ML results 
(took place 29.11.2022) 

• November 2022 to May 2023: Based on the November workshop some ew calculations have 
been performed to enriche the training set.  Accuracy metrics were defined to compare the 
results. 

• April 2023: 2nd Workshop to exchange information and compare ML results for different levels 
of complexity. Following the workshop the teams started working in improving the accuracy of 
their methodologies 

• 8-10 November 2023: ML session during the ACED/DONUT Workshop and parallel 
discussions of the participating teams 

• March 2023 to June 2024: Wrap up of results and preparation of common publication and 
online model and data repository 

• June 2024: submission of the manuscript for publication 
 

 

 

Figure 2: Benchmark timeline including major milestones and workshops 
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2.3 Involved teams 

 More than 10 research teams across Europe (within and outside EURAD) have joined this benchmark, 

both at the level of chemical system definition and production of training data, as well as for the part 

relevant to machine learning techniques. The main participating teams and contact persons are listed 

below in FIGURE 3:  

 

 

Figure 3: Research teams and contact persons involved in the geochemistry and machine learning 

benchmark 

 

2.4 High quality training datasets and problem set 

Two systems of interest have been identified.  The first system is relevant to cement 

dissolution/precipitation. The chemical system includes Ca-Si and simple C-S-H models and the 

CEMDATA-18 thermodynamic database is used (Lothenbach et al., 2019). The used approach is based 

on C-S-H solid solution thermodynamic models developed by Kulik (2011). . With increasing complexity, 

a more complete system is addressed, including Al-Mg-S-C-(Na-K) using a structurally-consistent 

CASH+ sublattice solid solution model for fully hydrated C-S-H phases (Kulik et al., 2022) and its 

extension for the uptake of alkali metals and alkaline earth metals in C-S-H (Miron et al., 2022). 

The second system is relevant to the sorption of U on claystone formation (e.g. Callovo-Oxfordian), 

Opalinus or BOOM clay). Some preliminary work on the used of surrogate model to decipher Cs  sorption 

uncertainty on Callovo-Oxfordian formation has been made and has been used as starting point to 

define the benchmark storyboard. Uranium is a more complex system because of its complex speciation 

and required to build a benchmark with an increasing complexity. The model used for U(VI) sorption on 

montmorillonite in the absence and presence of carbonate is described in Marques et al. (2012) For the 

two systems of interest the major geochemical solvers PHREEQC, ORCHESTRA, GEMS (Figure 4) 

have been used by experts to produce data relevant to the geochemical systems of interest. The 

cementitious systems that are considered with increased level fo complexity are shown in Fig. 4. It is 

stressed that for GEMS and ORCHESTRA the lead developers have accompanied the benchmark since 

the beginning guaranteeing that all necessary details are adequately considered. The results of the 

geochemical modelling of all systems have shown that all three geochemical solvers are in very close 

agreement with each other even if different algorithms and theoretical approaches are used for the 

calculation of the geochemical equilibrium. The systems of interest, the thermodynamic databases and 



EURAD  Deliverable 4.8 – Report describing the result of the machine learning benchmark carried out 
during the WP DONUT 

EURAD (Deliverable n° 4.8) – Report describing the result of the machine learning benchmark 
carried out during the WP DONUT 
Dissemination level: Public 
Date of issue of this report: 31/05/2024   

Page 11  

the exact models along with the input and output files will be provided as supplementary material along 

with the open access publication. .  

 

 

 

 

 

 

Figure 4: (top)The major geochemical solvers are operated by experts in the field, benchmarked and 

used to produce consistent training datasets for the machine learning techniques. (bottom) the 6 levels 

of complexity of the cementitious system. 

 

2.5 Data Management and open research 

Throughout the benchmark, all relevant input files, models and results are stored in an online secure 

cloud service (SWITCH), offered by PSI and Swiss Universities. The status and progress may be 

followed online at any time at the following a dedicated shared link(the drive is password protected; 

credentials have been provided to the interested parties and EURAD participants). It is intended that 

after the end of the benchmark all files will be accessible online as well as supplemental material to the 

journal publications. Snapshot of the folder structure may be seen in Figure 5   
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Figure 5: Online Benchmark Data management and SWITCH drive. The benchmark workflows, 

documentation, models, input files, output files and results are accessible in well structured folder 

system. 

 

The specific benchmark has been data intensive and more than 2’500 files have been produced 

occupying more than 12GB of disk space. To date the Zenondo online open platform is selected for 

uploading the produced research data and models after the end of the benchmark. Zenodo is a CERN 

supported research data repository which provides along with the necessary space a digital object 

identifier (DOI) to every upload 

 

The benchmark team has defined a specific workflow in order to standardize the process from system 

definition to machine learning output. In figure 6, the workflow from system definition to creation of 

training files is illustrated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The workflow from system definition to creation of training files is illustrated.  
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2.6 Benchmarking of the geochemical solvers 

 

The results of the three geochemical solvers have been compared for all systems considered. The 

demonstrated very close agreement can be visualized for the minimal cementitious system in Figure 7. 

The plot depicts the results of the geochemical codes for the same input conditions at the plane of Gel 

water Vs Bulk Al2O3. Boxes are for GEMS, circles for ORCHESTRA and corsses for PHREEQC. The 

results of the geochemical codes practically overlap.  

 

Figure 7: Verification figures for the minimal cementitious system. The three geochemical codes produce 

resutls in excellent agreement with each other.  

 

2.7 Application and accuracy of predictions of ML algorithms 

Several ML methods (e.g. deep neural networks technique, polynomial chaos expansion, Gaussian 

processes) are used to create the surrogate models. The trained surrogate models are then tested in 

an independent set of samples to evaluate their accuracy by using a fifteen different metrics.  The teams 

, as shown in figure 3, have already trained their algorithms and produced the final results. For the low 

complexity cementitious system, very good agreement in terms of accuracy can already be 

demonstrated. The accuracy of the surrogate models  can be measured by using an independent set of 

input samples and testing against the ground truth (result of geochemical solver). During the course of 

the benchmarking exercise it has been observed that a single metric of accuracy is not adequate to 

describe the accuracy of the produced models for parameters (e.g. concentrations) which range across 

a few orders of magnitude. The most important metrics of accuracy which are used at the moment are 

shown in figure 8. Several measures of accuracy are used to scrutinize the efficiency of the produced 

surrogate models. When a model passes all criteria e.g. mean square error (MSE), mean average error 

(MAE), root mean square error (RMSE) being lower than specific desired accuracy values, then it can 

be considered suitable for use in reactive transport simulations in the range of input data and the 

according learning set. The level of accuracy can be set depending on the scope of the respective 

application.    
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Figure 8: Surrogate models created by machine learning are tested against independent samples with 

the metrics of accuracy as shown in this figure.  

 

 

 

 

The produced results on the cases tested  indicate that all teams can achieve very high accuracy with 

their modelling techniques.. Moreover, a significant speedup of the order of two to four orders of 

magnitude is already demonstrated depending on the complexity of the system, when compared to the 

efficiency of the geochemical solvers at “cold start” conditions. “Cold start” conditions are considered 

when the successive geochemical calculations are not related with each other. For successive 

calculations which are related to each other, as for example in a reactive transport setup in two 

successive time steps at the same grid point, some of the geochemical solvers have shown an increased 

efficiency. This is relevant to the initial conditions of the iterative solvers which are very close to 

equilibrium thus requiring a significant smaller number of iterations to convergence. Some indicative 

results are presented below in figure 9. These are results from the PSI team using neural networks for 

creating the surrogate model. Similar results from all teams are deposited online in the Benchmark cloud 

directory and will be the central part of the forthcoming publication. In figure 9, (left) the primitive  

cementitious system with its input parameters and operational range is illustrated in detail. The machine 

learning model, in this case neural networks, accepts as input three variables which define the 

composition of the system. The output are the 17 variables as mentioned on the table. For a specific 

output dimension, namely the amount of Ca in the solid phase after equilibration, the model predictions 

(red boxes) is tested against the ground truth, which in this case is the geochemical solver GEMS (blue 

crosses). Both the visual interpretation and the aforementioned metrics (for all output parameters) 

indicate close agreement between the ML-model and the geochemical solver.   
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Figure 9: Example of a cementitious system with input and output parameters (left). Surrogate model 

prediction (example of PSI-team using neural networks) for the amount of Ca in the solid phase after 

equilibration, and visual comparison with the geochemical solver GEMS output is shown; The y-axis is 

the molar concentration of Ca in the solid phase, while the x-axis signifies the test case under 

consideration. A total of 500 random 3-dimensional input test is shown. In this graph 500 random 

samples are compared (right). Accuracy and speed up of calculations is maintained at very high levels.  

The results of all teams (Prasianakis et al. 2024), which participated at the cement system benchmark 

are plot for the simple cement system are depicted in Figure 10 for the mean average percentage error 

(MAPE) metric. The bars with different colors depict the difference between the two geochemical solvers 

GEMS and ORCHESTRA as well as the accuracy of each ML model. 
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Figure 10: Benchmark results for the simple cementitious system. The metric mean absolute percentage 

error with (MAPE) is plot for all output parameters. For the acronyms of the method see main text. (from 

Prasianakis et al. 2024). blue color: Is the difference between the output of the geochemical solvers  

GEMS and ORCHESTRA; red color: the accuracy of the Gausian processes active learning (GP-AL) 

method; green color: the accuracy of the neural network (NN_Matlab) model produced by Matlab; yellow 

color: the accuracy of the neural network (NN_Pytorch) model produced by PyTorch; purple color: the 

accuracy of the neural network (NN_Tensorflow) model produced by TensorFlow; brown color: the 

accuracy of the Random Forest Gausian Processes (RF-GP) model. 

All ML models have shown very good performance by balancing between training effort and accuracy.  

The ML models have been also benchmarked in terms of computational efficiency on the same CPU 

hardware. The results are depicted in Figure 11 (Prasianakis et al. 2024). All ML models provide a 

significant speed-up in the geochemical calculations compared for example to the PHREEQC 

geochemical code which represents the typical efficiency of a geochemical solver when random input 

geochemical calculations are considered. However, it was also observed that during a reactive transport 

simulation setup the geochemical code ORCHESTRA was able to show a significant speed-up, mainly 

benefiting from the efficient initialization between successive time steps at the same grid point (“warm 

start”).   
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Figure 11: Benchmark results for the simple cementitious system relevant to the computational efficiency 

of the methods. A significant increase in computational efficiency is observed when ML models are used  

(from Prasianakis et al. 2024) 

 

3. OUTLOOK 

A detailed version of the work carried out (Prasianakis et al. 2024) will be soon submitted to a peer 

review journal. Through the benchmark it has been possible to analyze and address all challenges 

relevant to training and validation of the ML models. The development of such surrogate models has 

shown a great potential in accelerating the geochemical calculations and an estimate on training efforts 

versus expected achieved accuracy can be calculated. This allows already at the stage of designing of  

the numerical simulations to compute the expected gains in efficiency and to decide whether to proceed 

with a traditional implementation or with a ML-assisted implementation. The larger the problem and the 

number of simulations which need to be performed, the more the expected gains. The actual 

performance of ML-enhanced reactive transport simulations will be a topic to be investigated in our 

future works.  
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