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Executive Summary 

The Monitoring Equipment and Data Treatment for Safe Repository Operation and Staged Closure 

(MODATS) work package (WP) of the European Joint Programme on Radioactive Waste Management 

(EURAD) is conducting research, development and demonstration (RD&D) into: monitoring data 

acquisition, treatment and management; use of monitoring data to enhance system understanding, 

including development of digital twins; interactions with civil society and other stakeholders; 

development of monitoring technologies; and development of knowledge regarding repository 

monitoring. 

The focus of MODATS is monitoring during the operational phase of repository programmes to build 

further confidence in the long-term safety case. In particular, MODATS is focusing on confidence in 

monitoring data. There are particular challenges associated with monitoring data acquired during 

repository operations, including challenges associated with its management (including processing and 

storage), modelling and visualisation. These are most frequently associated with the long timescales 

envisaged for monitoring programmes and the need to maintain the passive safety of the disposal 

system. Therefore, MODATS has undertaken research to develop methods through which monitoring 

data can be processed, stored, modelled and visualised. This has included preliminary work on the 

development of digital twins. 

The work on data management, modelling and visualisation was based on six test cases: 

• ALC1605 Test Case (undertaken by Amvalor, Andra and ENSAM): The ALC1605 test case 

used thermal monitoring data to develop methods for combined physics-based and data-driven-

modelling of repository evolution. 

• FE Experiment Test Case 1 (Nagra): Nagra’s FE experiment test case used data from the FE 

experiment to progress approaches to quality control, data processing, and data storage. 

• FE Experiment Test Case 2 (PSI): PSI’s FE experiment test case used temperature and relative 

humidity sensor data to develop machine learning-assisted physics-based and data-driven 3D 

heat transport modelling. 

• FE Experiment Test Case 3 (UFZ): UFZ’s FE experiment test case focused on the development 

of interactive visualisation systems, and visualisation tools for the comparison of simulation and 

observation data. 

• POPLU and Prototype Repository Experiments Test Case (VTT): The POPLU and Prototype 

Repository experiments test case developed tools and approaches for managing monitoring 

data, and provided illustrations of how these tools and approaches could be applied during 

repository monitoring. 

• PRACLAY Experiment Test Case (EURIDICE): The PRACLAY test case developed a structured 

and uniform approach to data processing and storage of monitoring data. 

The conclusions from the work are summarised below. 

Data Processing 

• The work in MODATS has allowed the identification and categorisation of monitoring data 

anomalies, description of the characteristics that define each type of anomaly, and identification 

of options for their processing. 

• MODATS has developed a range of tools for undertaking monitoring data processing and these 

have been made available online. 

• Data processing should be undertaken with reference to user requirements; processing does 

not have just one end goal; data sets after processing will differ according to the user requesting 

the data. 

• Currently, data processing requires expert user checking of outcomes. 

• Data processing should not remove data from the database but flag data so that it can be 

identified and used as appropriate. 
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Data Storage 

• Monitoring data should be stored with the user in mind, rather than being stored from the 

perspective of data acquisition. 

• Repository monitoring will be undertaken over long periods, so flexibility is required in monitoring 

databases, and regular upgrades to software and hardware should be planned. 

Modelling and Visualisation 

• The work in MODATS has demonstrated the potential for hybrid models that combine physics-

based and data-driven-modelling to provide a basis for analysis of monitoring data during 

repository operation. 

• The work in MODATS has also demonstrated benefits of communication through visualisation, 

including benefits to expert users and to university students. Communication to non-expert 

actors using virtual tours should include provision of contextual information, task-based activities 

and independent control of the tour to maximise learning. 

Digital Twins 

• A repository digital twin is a virtual model of part of a repository that is updated automatically to 

address specific objectives. 

• A digital twin of a repository cannot replicate the full reality of the underground (i.e. including all 

processes relevant to post-closure safety), as the repository system is subject to irreducible 

uncertainty. Instead, digital twins should focus on specific aspects of a repository (for example 

a twin of the underground infrastructure) defined by the objectives of the digital twin project. 

• Repository digital twins are not “one size fits all”, but come in different forms depending on the 

objective for which they are developed. 

• In MODATS, algorithms have been developed for surrogate models and for implementing 

physics-informed machine learning, representing prototypes of repository digital twins. 

• Future digital twins might help in global parameter sensitivity analysis and related parameter 

uncertainty quantification, and the digital twins produced in MODATS have provided an 

illustration of how such digital twins might be developed. 

• A comprehensive review of the potential applications of digital twins in repository programmes 

is required to identify the ways in which digital twins can practically enhance repository 

programmes. 

• Further use of the MODATS Reference Experiments, including development of their digital twins 

and their underlying surrogate models is required to establish the manner in which digital twins 

can be applied during repository monitoring. 

Workflow for Data Handling from Acquisition to Decision Support 

The work in MODATS has highlighted that monitoring programmes (e.g., monitoring programmes 

associated with URL experiments) typically follow a bespoke data management process. The 

developments in data management made during MODATS have allowed the elaboration of an overall 

data management process for using monitoring data to provide enhanced system understanding (Figure 

E.1). This data management process is considered as a common approach that can be applied in all 

programmes. Development of this process, and application of it during repository monitoring, is expected 

to improve data management in repository monitoring programmes and thereby improve the reliability 

of the data produced. The various test cases and integrated discussion of advancement made in data 

management, modelling and visualisation provided in this report illustrate the application of this process. 

 



EURAD Deliverable 17.6 – Advancements in Monitoring Data Management, Modelling and Visualisation 

EURAD - Monitoring Equipment and Data Treatment for Safe Repository Operation and Staged 
Closure, Deliverable 17.6 
Dissemination level: Public 
Date of issue of this report: 07/05/2024  Page iii  

 

Figure E.1 - Proposed workflow for data handling from acquisition to decision support. 
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PG: PRACLAY Gallery 

PIML: Physics-informed machine learning 

POD: Proper orthogonal decomposition 

POPLU: Posiva Plug 

PR: Polynomial regression 

PRACLAY: Preliminary demonstration test for clay disposal 

RF: Random forest 

RD&D: Research, development and demonstration 

RepMet: Radioactive Waste Repository Metadata Management 

RNN: Recurrent neural network 

SQL: Structured query language 

SUS: System usability scale 

SVM: Support vector machine 

THM: Thermal, hydraulic and mechanical 

THMC: Thermal, hydraulic, mechanical and chemical 

UMUX: Usability metric for user experience 

URL: Underground research laboratory 

VEIS: Virtual Experiment Information System 

VisCoSiR: Tool for the Visual Comparison of Simulation Results 

VTK: Visualization Toolkit (acronym used for both software and file format) 

WMO: Waste management organisation 
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WP: Work package 

ZFC: Connected fractured zone (acronym derived from French language term) 

ZFD: Diffuse fractured zone (acronym derived from French language term) 



EURAD Deliverable 17.6 – Advancements in Monitoring Data Management, Modelling and Visualisation 

EURAD - Monitoring Equipment and Data Treatment for Safe Repository Operation and Staged 
Closure, Deliverable 17.6 
Dissemination level: Public 
Date of issue of this report: 07/05/2024  Page 1  

1. Introduction 

Author: Matt White (Galson Sciences) 

1.1 Background 

Repository monitoring is motivated by the desire to inform decision making, strengthen understanding 

of system behaviour and to build further confidence in the repository safety case [1]. The Monitoring 

Equipment and Data Treatment for Safe Repository Operation and Staged Closure (MODATS) work 

package (WP) of the European Joint Programme on Radioactive Waste Management (EURAD) is 

conducting research, development and demonstration (RD&D) into: monitoring data acquisition, 

treatment and management; use of monitoring data to enhance system understanding, including 

development of digital twins; interactions with civil society and other stakeholders; development of 

monitoring technologies; and development of knowledge regarding repository monitoring. MODATS is 

building on previous international collaborative RD&D activities, including a European Thematic Network 

(ETN) [2], and the MoDeRn [3] and Modern2020 [1] projects. The context to repository monitoring is 

captured in the MODATS state-of-the-art report [4], and a comprehensive overview of MODATS is 

provided in the WP synthesis [5]. 

The RD&D in MODATS is supported by existing information and data from underground research 

laboratory (URL) experiments, including five reference experiments, referred to as the MODATS 

Reference Experiments: 

• ALC1605: A demonstration of the French reference disposal concept for high-level waste 

(HLW), which studies the impact of thermal loading on the metallic liner and the rock, and acts 

as a step in the qualification of the monitoring system design for the HLW concept. It is  led by 

Andra in the Bure URL, France. 

• The Full-Scale Emplacement (FE) experiment: The FE experiment investigates thermal, 

hydraulic and mechanical (THM) coupled processes at full scale, in repository-like conditions, 

to validate existing models. It also aims to verify the technical feasibility of constructing a 

disposal tunnel using standard industrial equipment. It is led by Nagra in the Mont Terri URL, 

Switzerland. 

• The Posiva Plug (POPLU) experiment: The POPLU experiment was a full-scale test of a 

possible design for a disposal tunnel end plug component in the disposal concept for the spent 

fuel repository in Olkiluoto (Finland) and Forsmark (Sweden). It was led by Posiva and SKB in 

the ONKALO Facility, Finland. 

• The Prototype Repository: The Prototype Repository is a full-scale field experiment in crystalline 

rock. The experiment aims to simulate conditions that are largely relevant to the 

Swedish/Finnish KBS-3V disposal concept for spent fuel. It is led by SKB in the Äspö Hard Rock 

Laboratory (HRL). 

• Preliminary Demonstration Test for Clay Disposal (PRACLAY): The PRACLAY experiment is a 

large-scale experiment designed to study the impact of the heat generated by HLW on the host 

clay formation. It also looks at how excavation affects the behaviour of the clay. The experiment 

is conducted by EURIDICE and ONDRAF-NIRAS in the High Activity Disposal Experimental 

Site (HADES) URL in Mol, Belgium. 

The focus of MODATS is monitoring during the operational phase of repository programmes to build 

further confidence in the long-term safety case. In particular, MODATS is focusing on confidence in 

monitoring data. There are particular challenges associated with monitoring data acquired during 

repository operations, including challenges associated with its management (including processing and 

storage), modelling and visualisation. These are most frequently associated with the long timescales 

(several decades) envisaged for monitoring programmes and the need to maintain the passive safety of 

the disposal system. Therefore, MODATS has undertaken research to develop methods through which 

monitoring data can be processed, stored, modelled and visualised. This has included preliminary work 

on the development of digital twins. 
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1.2 Objectives 

The key objective of this report is to provide an integrated discussion of the advancements made in 

monitoring data management (processing and storage), modelling and visualisation in MODATS. The 

work done in separate activities (test cases) is described and the results and conclusions summarised. 

Integrated conclusions from the work are drawn. Section 1.3 provides the context to this work and 

Section 1.4 presents the overall objectives of the work and approach taken. 

1.3 Data Management, and Modelling, Visualisation and Digital 
Twins in the Context of Repository Monitoring 

The primary objective of monitoring is to provide information to assist in making decisions on how, when 

and if to implement various steps in the management of the repository system. With respect to long-

term safety, the key purposes of monitoring of repository systems are [6 § 2]: 

• To provide information for making management decisions in a stepwise programme of 

repository construction, operation and closure. 

• To strengthen understanding of some aspects of system behaviour used in developing the 

safety case for the repository and to allow further testing of models predicting those aspects. 

• To provide information to give society at large the confidence to take decisions on the major 

stages of the repository development programme and to strengthen confidence, for as long as 

society requires, that the repository is having no undesirable impacts on human health and the 

environment. 

A requirement to conduct a programme of monitoring prior to, and during, the construction and operation 

of a disposal facility and after its closure, if this is part of the safety case, is included in the IAEA Specific 

Safety Requirements on disposal of radioactive waste [7]. Recommendations and guidance on how to 

comply with the safety requirements is provided in the IAEA Specific Safety Guide on geological disposal 

facilities for radioactive waste [8], and in the IAEA Specific Safety Guide on Monitoring and Surveillance 

of Radioactive Waste Disposal Facilities [9]. 

It is recognised that repository monitoring programmes will have to respond to the specific national 

context under which the programme operates; the ETN [2] recognised that there are different 

approaches to repository monitoring in waste management programmes, depending on the objectives, 

and specifically “the extent to which monitoring is seen as confirming processes related to evolution of 

the repository and its long-term safety” [2 § 7.3]. The factors that are typically considered in the 

objectives of the repository monitoring programme include [2 § 7.3]: 

• Waste type and engineered barrier system (EBS) properties and expected performance, which 

affect the extent to which parameters related to long-term performance can be monitored. 

• Implementation strategy, including plans for progression from one step to the next, including 

periods of observations in (open) underground structures. 

• Regulatory regime and requirements. 

• Degree of concept flexibility. 

• Political and public expectations. 

Driven by these factors, tailored approaches are being considered to monitoring in each repository 

programme. These include intensive monitoring of disposed waste in support of reversibility, a focus on 

monitoring of the geosphere to demonstrate suitable boundary conditions for long-term safety, and 

monitoring in representative locations to ensure the passive safety of emplaced waste. All of these 

approaches involve collection of data on multiple processes over multiple decades. Following 

acquisition, data will need to be managed effectively and efficiently during the operation of repositories. 

Monitoring data management is generally defined here as the processes and procedures that ensure 

the acquired monitoring data can be used to fulfil the objectives of monitoring programmes. Monitoring 

data management involves the processing of the data, organisation of the data (including metadata) into 
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databases with appropriate formats and structures, and supply of data for modelling and visualisation, 

and so that it can be used to support decision making1. 

 Data Processing 

Monitoring data are prone to errors owing to, e.g., sensor fouling (accumulation of deposits), calibration 

drifts, data transfer problems, and configuration errors in the data acquisition system. Data errors, 

referred to here as anomalies, have to be detected and handled. Invalid data could fall outside the 

plausible range of values, in which case, it may be easy to identify. Alternatively, they could sit within 

the plausible range and be difficult to differentiate from valid data [10 § 7.2]. 

Processing of monitoring data may include combining data acquired at different rates or reducing data 

(e.g., averaging of data collected over relatively short periods, so that it reflects a value representative 

of a longer period) so that it is more suitable for its intended use. 

Data processing is routinely applied in the URL experiments using a range of bespoke methods. Often, 

the methods are developed for the specific experiment or for a specific sensor used in an experiment. 

Such bespoke methods may not be appropriate for repository monitoring data sets. In particular, 

repository monitoring data need to be analysed in a systematic and comprehensive way that allows for 

the systematic identification of anomalies related to sensor ageing and malfunction, outside influences, 

and deviations of the repository system from expected behaviour, and provides data for modelling and 

visualisation in a quality-assured manner. 

Systematic methods and tools are therefore required to process repository monitoring data, so that it is 

suitable for the purpose for which it was acquired. In particular, methods and tools are needed to collate, 

clean and validate monitoring data, and visualise and report data, so that the sensor signals can be 

correctly interpreted. RD&D in MODATS has developed several such data processing tools. 

 Data Storage 

Repository monitoring will be conducted over long periods, potentially stretching into many decades. 

Owing to the long timescale, and the potentially large quantities of data that could be collected, methods 

need to be developed to efficiently and effectively store monitoring data to ensure its availability, and 

allow its effective and efficient use, in the long term. 

Data storage includes archiving of both the quantitative outcomes from monitoring (i.e., the parameter 

values), plus the metadata required in order to interpret the parameter values. Metadata is information 

that enables data to be managed in a structured manner [11]. This ensures that data quality and 

confidence in the stored data is maintained, and that data remain suitable for use in the future. Examples 

of metadata useful in the context of a repository monitoring programmes include information on the 

installation of the monitoring system and information on activities that might influence the parameter 

values recorded (e.g. parallel construction activities or periods of electrical outages). 

RD&D in MODATS developed data storage methods that will allow monitoring data and metadata to be 

effectively managed, for use as required throughout the repository programme. 

 Modelling, Digital Twins and Visualisations 

In repository programmes, where considerable amounts of data will be generated, it is necessary to 

have appropriate tools to reliably analyse monitoring data to support programmatic decision making and 

the related objectives. It is envisaged that evaluation of system behaviour using monitoring data will be 

undertaken on both a continuous and a periodic basis [12]. Continuous evaluation might focus on 

specific parameters and checking to see if parameter evolution is consistent with the evolution assumed 

 

1 Data management, modelling and visualisation incorporate “data analysis”, which is defined as the process of inspecting, 
cleansing, transforming, and modelling data with the goal of discovering useful information, informing conclusions, and 
supporting decision-making. In this report, we do not use the term “analysis” but instead use more specific terms. 
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in the safety case. Periodic evaluation would involve an integrated consideration of the full range of 

monitoring data, and would be focused on supporting updates to the safety case, including the 

underpinning safety assessment. 

Modelling 

Evaluation of the impacts of the coupled effects of mechanical deformation, fluid and gas flow through 

the repository and thermal loading from the waste is an important aspect of the safety case of a 

repository. Understanding of these impacts is gained through RD&D, including the use of numerical 

models capable of simulating coupled thermal, hydraulic, mechanical and chemical (THMC) processes 

and monitoring data [13].  Most waste management organisations (WMOs) are in the early stages of 

their repository programmes, and, therefore, the experience of using repository monitoring data in 

coupled models to support decisions is limited. There is, however, considerable experience of using 

URL experiment monitoring data in coupled numerical models. In particular, the Development of 

Coupled Models and their Validation against Experiments (DECOVALEX) project is a long-term 

international research collaboration for advancing the understanding and modelling of coupled THMC 

processes in geological systems [14]. Summaries of recent research in DECOVALEX are presented in 

[13, 14 and 15]. 

Recently, data science has emerged as an alternative to the approaches adopted in coupled numerical 

modelling [16]. Data science involves using scientific methods, processes, algorithms and systems to 

extract or extrapolate information and knowledge from previously collected data (training data) to identify 

the characteristics of a data set and to predict the future trend. This is referred to as machine learning 

(ML). A sub-set of ML is data-driven modelling (DDM). Coupled numerical models, referred to as 

physics-based modelling (PBM) in data science, assume that a physical model describing the behaviour 

behind processes is available and sufficiently accurate to understand the operation of processes and 

(in some cases) to predict future behaviour. Originally, data science was suited to data-intensive 

applications such as image processing and pattern recognition. In recent years, physics-informed ML2 

methods have been developed to an extent that they accelerate numerical simulations and have become 

directly usable for process-driven areas including application to modelling of THMC processes in 

repositories. 

The spectrum of ML methods applicable to modelling of repository THMC processes is extensive, 

presenting a diverse array of techniques, for example: 

• Linear regression models constitute a fundamental approach for straightforward parameter 

prediction3 tasks. These models establish a relationship between input features, such as 

historical data and geographical information, and predictions [17]. 

• Time series models, including autoregressive integrated moving average [18] and exponential 

smoothing [19] are particularly applicable to short-term predictions. 

• Deep learning models are currently widely applied in data science applications, particularly 

recurrent neural networks (RNNs) and convolutional neural networks (CNNs). RNNs, which are 

proficient in capturing temporal dependencies within time series data, prove effective for short-

term predictions [20]. Conversely, long short-term memory (LSTM) networks, a subset of RNNs, 

Excel in modelling prolonged dependencies within time series data [21, 22]. CNNs, which are 

adept at addressing spatial dependencies in predictions, find application in predicting parameter 

values across geographical regions [23, 24]. Additional approaches used for predictions include 

random forests [25], which amalgamate multiple decision trees to enhance accuracy. 

• Support vector machines [26], which are applicable in the presence of non-linear and high-

dimension data, present another noteworthy avenue for parameter predictions.  

 

2 Physics-informed machine learning allows scientists to use prior knowledge to help the training of the algorithm, making it more 
efficient. This means it will need fewer samples than a pure DDM to train it well or to make the training more accurate. 

3 Prediction is referred to as “forecasting” in data science. 
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• Gaussian process models [27, 28] provide a means to encapsulate uncertainty and provide 

probabilistic predictions.  

• Hybrid models [29] constitute an intriguing prospect, involving a fusion of ML models with 

physical models to bolster prediction accuracy. 

The potential benefits offered by these approaches are more rapid modelling, which may benefit the 

continuous evaluation of monitoring data, and greater ability to model parameter evolution across 3D 

space. A particular opportunity is the use of the ML algorithms in digital twins. 

Digital Twins 

The Defense Acquisition University definition of digital twin, commonly used in defence, aerospace and 

related industries, (quoted in [30]) is: “an integrated multiphysics, multiscale, probabilistic simulation of 

an as-built system, enabled by Digital Thread, that uses the best available models, sensor information, 

and input data to mirror and predict activities/performance over the life of its corresponding physical 

twin”. 

There are three important parts in the digital twin of an object [31]: 

• A model of the object. 

• An evolving set of data relating to the object. 

• A means of dynamically updating or adjusting the model in accordance with the data. 

Digital twins have most frequently been used to support the production and maintenance of structures, 

especially engineered structures such as aircraft, bridges, and machinery. However, in recent years, 

they have begun to be developed in other industries. The coupling of digital twins with data science 

applications provides significant opportunities for the expansion of the use of digital twins, including in 

repository programmes. These opportunities could include development of a replica of a disposal system 

that progressively becomes more detailed and more closely representative of the real-world system as 

more data is collected and information is derived from the acquired data. Such a digital twin requires 

feedback from monitoring data to the underpinning models contained within it. 

Geological disposal presents unique challenges to the development of digital twins owing to the mix of 

engineered and natural structures, the presence of spatial and temporal heterogeneities, and the extent 

to which detailed information can be collected without disturbing the passive safety of the system. There 

is a need also to develop the methodologies and software tools through which digital twins can be 

developed and evolve during the operational phase in response to collection of repository monitoring 

data. 

Visualisation 

A key feature of some digital twins is the visualisation of the system structure, the data acquired used 

in modelling, and the modelling results. Visualisation has the potential to add significant value to the 

analysis of data by allowing the integrated 4D comparison of different data sets against the domain of 

interest. However, this requires development of approaches for modelling and viewing the system 

structure and for integrating data that may be stored in different formats. Developing value from the 

visualisation requires research into the use of visualisations to enhance expert understanding, to 

communicate to stakeholders and educational purposes. 

Modelling, Digital Twins and Visualisations in MODATS 

In MODATS, RD&D was undertaken with the objective of developing data-driven methodologies to 

model monitoring data, developing prototype digital twins and developing visualisation approaches to 

further understanding, to support communication and for use in education. The MODATS Reference 

Experiment data sets supported this work.  
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1.4 Overall Objectives and Approach 

The work in MODATS on data management, modelling and visualisation was based on six test cases 

that each addressed different aspects of data management, modelling and visualisation, as follows: 

• ALC1605 Test Case (undertaken by Amvalor, Andra and ENSAM): The ALC1605 test case 

used thermal monitoring data to develop methods for combined physics-based and data-driven-

modelling of repository evolution. 

• FE Experiment Test Case 1 (Nagra): Nagra’s FE experiment test case used data from the FE 

experiment to progress approaches to quality control, data processing, and data storage. 

• FE Experiment Test Case 2 (PSI): PSI’s FE experiment test case focused on data use, and 

used temperature and relative humidity sensor data to develop ML-assisted physically-based 

3D heat transport modelling. 

• FE Experiment Test Case 3 (UFZ): UFZ’s FE experiment test case focused on the development 

of interactive visualisation systems, and visualisation tools for the comparison of simulation and 

observation data. 

• POPLU and Prototype Repository Experiments Test Case (VTT): The POPLU and Prototype 

Repository experiments test case developed tools and approaches for managing monitoring 

data, and provided illustrations of how these tools and approaches could be applied during 

repository monitoring. 

• PRACLAY Experiment Test Case (EURIDICE): The PRACLAY test case developed a structured 

and uniform approach to data processing and storage of monitoring data. 

The overall aims of the test cases are to provide improvements to the data processing, modelling and 

visualisation workflow for repository monitoring data. This includes harmonising data management 

approaches and producing common methods to improve the reliability of the data and transparency in 

the methods used to manage it. This should improve the confidence in the data for all stakeholders. The 

test cases have also sought to take the first steps in developments of digital twins based on monitoring 

data, and to evaluate the potential for digital twins to support more rapid evaluation of monitoring data 

(e.g. support continuous evaluation), to improve the accuracy of modelling in 3D and to support the 

detection of monitoring system malfunction. 

Within MODATS, each test case was undertaken separately. However, regular meetings were held to 

comment on development of the test cases, including meetings dedicated to the test cases and meetings 

focused on the entire WP. The record of the test cases is captured in this document, along with the 

publication of scientific papers that provide additional details of the work undertaken. Initial drafts of test 

case descriptions have been reviewed and edited by partners within MODATS. The individuals that have 

contributed to each section of the document are identified at the start of the relevant section. 

1.5 Report Structure 

This report is presented in seven sections. Following this introduction (Section 1), separate sections (or 

sub-sections) are presented for each test case respectively (Sections 2-5). For each test case, a 

description of the Reference Experiment is provided, the objectives and methods used in the test case 

are described, the results presented, and conclusions drawn. 

Section 6 provides an integrated discussion of repository monitoring data management based on the 

outcomes from the test case work undertaken in MODATS. The discussion is structured around the 

topics of data processing, data storage, data use, and digital twins. 

Section 7 provides the conclusions from the MODATS work on data management, modelling and 

visualisation. 
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2. ALC1605 (Amvalor, Andra and ENSAM) 

Authors: David Muñoz and Francisco Chinesta (AMVALOR), Julien Cotton and Johan Bertrand (Andra), 

Anoop Ebey Thomas (ESI Group) 

Editor: Matt White (Galson Sciences) 

2.1 Introduction 

ML has emerged as a valuable tool for temperature forecasting [32, 33], owing to its adeptness in 

handling intricate patterns and vast data sets. The spectrum of ML methods applicable to temperature 

forecasting is extensive, presenting a diverse array of techniques. Work in this test case focused on the 

most prevalent methods employed in this domain, as introduced in Section 1.3.3. In particular, the hybrid 

approach combining ML and physics-based models is emphasised, demonstrating its potential for 

advancements in temperature forecasting. 

The test case investigates challenges for complex and instrumented systems (multi-scale, multi-physics, 

and multi-media), focusing on practical applications of ML methods. It is based on data from temperature 

monitoring of a HLW cell demonstrator (called ALC1605) implemented at Andra's Bure URL. This 

endeavour encompasses a blend of numerical simulation, real structure measurements, and data mining 

techniques. This approach represents a pioneering advancement in the realm of nuclear waste 

management. 

In this work, the term "digital twin" is used to describe the digital replication of physical assets, derived 

from real-life data collected through various sensors and monitoring technologies while the asset is in 

operation. This process typically involves creating an analytical, data-driven model (referred to as the 

twin) to analyse, update, and manage the performance of its physical counterpart. In contrast, the term 

"hybrid twin" is associated with solutions that involve constructing an additional, complementary virtual 

model. This supplementary model is inherently physics-based and delineates cause-and-effect 

relationships. 

This section is structured as follows: 

• Section 2.2 provides a description of the ALC1605 instrumented heating cell. 

• Section 2.3 describes the methodology used to construct the hybrid twin model and its 

constituent components. 

• Section 0 describes the results of applying the model, featuring illustrative examples.  

• Section 0 explores the applications of the methodology. 

• Section 2.6 presents the conclusions.  

2.2 Description of the Reference Experiment: ALC1605 

 HLW concept 

Andra plans to dispose of HLW in the Cigéo geological disposal facility in the Callovo-Oxfordian Clay of 

the Paris Basin4. The design of the facility envisages that HLW will be emplaced in small-diameter 

tunnels referred to as disposal cells (Figure 2.1). The disposal cells will be lined with a low-carbon steel 

sleeve to facilitate the emplacement process and retrievability of the waste if so desired in the future. 

This design formed the basis of the ALC1605 test case. 

 

4 It is planned that long-lived intermediate-level waste will also be disposed of in the Cigéo facility. 
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Figure 2.1 - Illustration of the HLW disposal cell design. ZFD is the French acronym for the discrete 
fracture zone, part of the excavation damage zone. 

 ALC1605 

The ALC1605 demonstrator is designed to be as similar as possible to the HLW reference concept. 

Table 2.1 illustrates the main elements of the cell, in the reference design and in ALC1605. 

Table 2.1 - Synthesis of the reference concept and ALC1605 features. 

Component Reference concept  ALC1605 

Excavation technique Cell totally excavated and then introducing of pipes in one time 

Excavation diameter (mm) 800 – 920 920 

Pipe reference steel API 5L X65 MS PSL 2 API 5L X65 MS PSL 2 

Excavation orientation σH σH 

Tilt Cell axis, up: 2 % +/- 1 % in each point of the cell  

Azimuth Cell’s axis orientation: N155° or N335° (according to σH) +/- 1 %  

Pipe dimensions 
Ø outside 660 mm (26’’) or 762 

mm (30’’) 
Thickness: 25.4 mm (1’’) 

Ø outside 762 mm (30’’)  
Thickness: 25.4 mm (1’’) 

Length 80-150 m 80 m 

Cell bottom Closed 
First tube equipped with cement 

injection system  
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Component Reference concept  ALC1605 

Insert 

Mobile insert with concrete station 

bloc for waste package transport’s 

engine 

Note envisaged 

Bride Provisory radioactive tight closer Note envisaged 

Pipe connection type Clipped 
Clipped with cement material 

proof joint 

Surrounding filled materials Yes Yes 

Water collecting device Integrated to insert Note envisaged 

Cell closure device  
Radiological closure device and 

bride 

Determined during conception 

phase 

 

The characteristics of ALC1605 are: 

• A total length of 28.5 m, including a 6 m cell head and a 19 m "useful" part, with a 1 m overlap 

area between the liner and the insert. 

• Excavated cavity head diameter 791 mm, with insertion of a diameter insert outer 767 mm (an 

annular space of 12 mm radius) and thickness 21 mm. 

• The useful part excavated in diameter 750 mm, with the installation of a liner of diameter outside 

700 mm (an annular space of 25 mm radius) and thickness 20 mm. 

• A bottom plate, a plate at the top of the liner and a plate at the top of the insert. 

• The completion of the heating over a length of 15 m between 10 and 25 m deep. 

ALC1605 is instrumented to the extrados of the liner by: 

• Two systems for measuring the convergence of optical fibre folders (Shirts No. 7 and 9). 

• Three longitudinal lines have been equipped with fibre-optic sensitive cables for the 

measurement of axial deformations and temperature along the entire length of the cell 

(Folders 2 to 12). 

• A temperature measurement section by PT1000 sensors (Folder n ° 7). 

• A section of measurement of the deformations by vibrating rope (Folder n ° 9). 

• A cell allowing geochemical measurements (Folder n ° 10). 

Figure 2.2 shows the positioning of the instrumentation. 
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Figure 2.2 - ALC1605 scheme of connections and numbering of individual casing segments (tubes). 
 

 Objective of the ALC1605 demonstrators 

The ALC1605 demonstrators simulates, as realistically as possible, the construction of a HLW disposal 

cell and emplacement of waste within it. The main aim of the ALC1605 experiment is to study the 

behaviour of a HLW cell conforming to the reference concept under heating. The specific objectives can 

be defined as follows: 

• Study the impact of thermal loading on the thermomechanical behaviour of the metallic liner in 

the presence of filling material (direction and amplitude of ovalization, time to reach the blocking, 

axial thermal expansion, possible discharge). These data will complement those obtained in a 

parallel experiment (AHA1605 which was identical except there was no thermal loading) to 

improve the description of the rock / structure interaction in the modelling of the long-term 

behaviour of the cell liner in order, in particular, to verify the gap distance for the package 

handling. 

• Studying the impact of thermal loading on the THM behaviour of rock in the near field beyond 

the excavation damaged area, and in the far-filed (i.e., beyond a few diameters of the tunnel) in 

the presence of filler material. This includes monitoring the temperature and interstitial pressure 

fields around the cell at different distances from the access gallery. A comparison with the 

measurements made during a previous experiment (ALC1604) will identify a potential impact of 

the filler material on the kinetics and amplitudes of thermal overpressures in the near-filed and 

far-field. In addition, the experiment investigates the evolution of permeability over time to study 

healing of the damage zone. 

• ALC1605 is a step in the qualification of the monitoring system design for the HLW concept. 

The main objectives related to qualification were (i) to qualify the measurement technique, (ii) 

to validate the design and installation method in situ, (iii) to compare optical fibre system (OFS) 

data to reference sensors, and to assess system durability and potential drift, over several years 

during a thermal experiment. 
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2.3 Methodology 

This section outlines the methodology used to develop hybrid twin models for the ALC1605 instrumented 

heating cell. First the operational principles of hybrid twin models are described, followed by an 

examination of its two key components: the PBM and the DDM. 

 Hybrid Twin Approach 

A hybrid twin model aims to improve the accuracy of numerical simulations rooted in physics by 

integrating real-world measurements. We define "ignorance" as the deviation between the real-world 

behaviour and the outcomes produced by numerical simulations. Incorporating the ignorance model into 

these simulations enables us to replicate the actual application behaviour, as depicted in the equation 

below: 

 𝑌(𝑋, 𝑡, 𝜇) = 𝐴(𝑋, 𝑡, 𝜇) + 𝐵(𝑋, 𝑡, 𝜇),  (Equation 2.1) 

where 𝑌 represents the observed real-world phenomena, while 𝐴 denotes the physics-based solution, 

and 𝐵 symbolises the realm of uncertainty or ignorance. Additionally, 𝑋 signifies the spatial coordinates, 

𝑡 represents temporal values, and 𝜇 encompasses any additional parameters, including material 

properties, boundary conditions, and other relevant factors. 

 Physics-Based Model 

The PBM plays a critical role in incorporating the fundamental principles of physics into forecasting of 

the temperature for the ALC1605 experiment, as it interfaces with the hybrid twin model. The PBM uses 

the finite element method (FEM) to derive the temperature distribution within the system. 

The FEM mesh encompasses all components within the tunnel, as well as a substantial portion of the 

surrounding terrain (Figure 2.3). The mesh comprises 420,120 quadratic elements, each interconnected 

by a network of 1,701,835 nodes. Nonetheless, during the computation of the thermal problem, we 

streamline the process by employing a technique known as multi-point constraints [34, 35]. 

In addition to examining the tunnel’s immediate surroundings, it is essential to focus on the tunnel itself, 

as it serves as a crucial element in the overall setup. Figure 2.4 illustrates the engineered components 

that constitute the tunnel. This visual representation not only showcases the tunnel’s structure but also 

highlights the placement of the heating elements, which replicate the radioactive waste that will 

eventually be stored in such tunnels. 

 

Figure 2.3 - Mesh employed to solve the thermal problem over the whole domain. 
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Figure 2.4 - Overview of the engineered components of the tunnel. 

When examining the physics underlying the model, the intricate interplay between the surrounding air, 

the sleeves, and the heating elements is ascertained through a thermal calculation. This calculation 

employs a fluid/structure coupling framework that characterises the heat transfer fluid as an ensemble 

of one-dimensional elements. Within these elements, a diffusion-convection problem is solved to capture 

the heat exchange dynamics. In parallel, the thermal computation for the remainder of the domain 

adheres to the principles of the heat equation. This domain’s thermal behaviour is discretised through a 

conventional FEM approach. This combined methodology ensures a robust and accurate representation 

of the complex thermal processes at play in the system, facilitating a comprehensive understanding and 

effective analysis of the model’s behaviour. 

When considering the material properties within this domain, it becomes essential to emphasise the 

distinctive characteristics across various regions. On one hand, the sleeves and their associated 

components, as illustrated in Figure 2.4, exhibit material properties consistent with steel. In contrast, the 

surrounding areas of the tunnel showcase diverse material characteristics contingent upon their specific 

regions. As shown in Figure 2.5, we present a frontal view of the gallery, concentrating on the region 

adjacent to the tunnel. Within this specific area, we delineate three distinct zones, each governed by 

unique material properties: the filler material, referred to as MREA, the connected fractured zone 

abbreviated as ZFC, and the diffuse fractured zone, referred to as ZFD. Extending beyond these defined 

zones, the material properties maintain consistency throughout the remaining domain, aligning with 

those attributed to Callovo-Oxfordian (COx) claystone. This differentiation stems from the impact on the 

adjacent zone during borehole drilling, resulting in modified material properties, particularly a decrease 

in thermal conductivity. Furthermore, it is crucial to note that the thermal conductivity of these regions is 

anisotropic, dependent on the rock’s stratification layers. Hence, we distinguish between horizontal (𝜆ℎ) 

and vertical (𝜆𝑣) thermal conductivity. The main thermal properties assigned to different parts and 

components of the model is provided in Table 2.2. Turning attention to the thermal properties of the air, 

adjustments are made based on temperature variations. 



EURAD Deliverable 17.6 – Advancements in Monitoring Data Management, Modelling and Visualisation 

EURAD - Monitoring Equipment and Data Treatment for Safe Repository Operation and Staged 
Closure, Deliverable 17.6 
Dissemination level: Public 
Date of issue of this report: 07/05/2024  Page 13  

 

Figure 2.5 - A frontal perspective of the gallery, prominently featuring the area adjacent to the tunnel, 

while also emphasising the presence of three distinct material property zones. 

 

Table 2.2 - Overview of the main thermal properties of the materials employed to define the model. 

 λ (W.m-1.K-1) Cp (J.Kg-1.K-1) ρ (Kg.m-3) 

Steel 50.000 460 7800 

MREA 0.890 2560 1160 

ZFC λh = 1.815 

λv = 1.175 

800 1700 

ZFD λh = 1.990 

λv = 1.290 

800 1700 

COx λh = 2.050 

λv = 1.330 

800 1700 

 

However, our objective extends beyond the creation of a rigid, physics-based model reliant solely on a 

fixed set of parameters. We are striving for a more adaptable and versatile solution that takes into 

account real-time constraints and can accommodate changes in input parameters. To achieve this, our 

approach first involves the definition of the parameters that we need to explore. By considering the 

variations and bounds of these parameters, we define the multidimensional space that we intend to 

explore. Within this space, we conduct analyses and simulations to generate corresponding temperature 

fields. These temperature fields provide an understanding of the system’s behaviour under different 

parameter settings, allowing us to adapt and optimise our solutions in response to dynamic real-world 

conditions. In particular, we focus on four parameters, whose bounds are defined as: 

1. The power of the heating elements, 𝑃 ∈ [427.5,877.5] watts per element. 

2. The thermal conductivity of the MREA, 𝜆MREA ∈ [0.7120,1.0680] 𝑊 ⋅ 𝑚−1 ⋅ 𝐾−1. 

3. The horizontal thermal conductivity of the ZFC, 𝜆ZFC
ℎ ∈ [0.7120,1.0680] 𝑊 ⋅ 𝑚−1 ⋅ 𝐾−1  
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4. The vertical thermal conductivity of the ZFC,  𝜆ZFC
𝑣 ∈ [0.7120,1.0680] 𝑊 ⋅ 𝑚−1 ⋅ 𝐾−1. 

Once the mesh has been constructed and parameterised, temperature data is used to construct a 

surrogate model for further analysis and prediction. The surrogate model is a mathematical model 

employed to approximate the temperature field given a new set of parameters. To construct the 

surrogate model, we employ a systematic approach. First, we organise the collected temperature data 

into a structured matrix (𝐀𝑖), for given set of parameters, where the rows represent individual nodes, 

and the columns correspond to different time steps. This matrix serves as the foundation for our 

subsequent modeling efforts. The next step in our process involves the decomposition of the 

temperature field for each unique set of parameters. To accomplish this, we use a method known as 

CUR decomposition [36]. The CUR decomposition allows us to effectively extract and represent the 

essential components of the data, facilitating the creation of a compact and insightful surrogate model. 

In the context of this decomposition, careful consideration has been given to the selection of matrices 

to maintain the constancy of 𝐂 and 𝐑 irrespective of the chosen parameters. Meanwhile, matrix 𝐔𝑖 is 

intentionally designed to dynamically adapt based on the specific parameter values. Consequently, we 

obtain the following expression for a given parameter set: 

 𝐀𝑖 = 𝐂 ⋅ 𝐔𝑖(𝑃, 𝜆MREA, 𝜆ZFC
ℎ , 𝜆ZFC

𝑣 ) ⋅ 𝐑𝑇 . (Equation 2.2) 

Finally, the matrix 𝐔𝑖 can be derived for any set of parameter values by using the sparse proper 

generalised decomposition framework [37]. A visual representation illustrating the dynamic evolution of 

the temperature field within a specific thermal system is presented in Figure 2.6. This system is defined 

by several key parameters. The thermal conductivity of the MREA is set at 0.89 𝑊 ⋅ 𝑚−1 ⋅ 𝐾−1, while the 

horizontal and vertical thermal conductivity of the ZFC are 1.815 and 1.175 𝑊 ⋅ 𝑚−1 ⋅ 𝐾−1, respectively. 

The heating elements operate at a power level of 675 watts per element, corresponding to a heat flux 

density of 128 watts per square meter (𝑊/𝑚2). The problem at hand commences with an initial condition 

where a uniform temperature of 21∘C is imposed across the entire system. It is crucial to emphasise that 

the external surfaces of this system are assumed to be adiabatic, signifying no heat exchange with the 

surroundings. 

 

Figure 2.6 – Progression of the temperature distribution over time, as influenced by a specific set of 

parameters. 

The essence of the hybrid twins approach lies in augmenting the physics-based solution with the 

available measurements at our disposal. The following section will explore the modelling of the 

disparities between the physics-based model described above and the actual behaviour observed 

through sensor data. 
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 Data-Driven Model 

The DDM plays a crucial role in representing a concept commonly referred to as "ignorance." As 

previously emphasised, the choice of employing the LSTM deep learning architecture stems from its 

good performance in handling sequential data. This decision is grounded in the aim to harness the 

capabilities of LSTM cells, intending to establish a robust methodology based on well-established 

temporal integration techniques—specifically, the forward Euler scheme [38, 39], as elucidated in 

Equation 3.3. This approach is commonly recognised as residual neural networks (NNs) [40, 41, 42]. 

LSTM cells seamlessly integrate short- and long-term memory units, incorporating an evanescent 

memory for the long-term path and a combination of long and short leads for the short-term memory 

response. Our primary objective is to capitalise on these characteristics to craft a highly effective model 

that excels in capturing the temporal dynamics inherent in the data sequences. 

 𝐵𝑡 =
∂𝐵𝑡

∂𝑡
⋅ 𝛥𝑡 + 𝐵𝑡−1.  (Equation 2.3) 

In the context of our hybrid twin framework, the symbol 𝐵 is used to represent the variable associated 

with the element of ignorance. The subscripts 𝑡 − 1 and 𝑡 signify two consecutive time steps. The 

essence of our methodology aims to model the rate of change of ignorance over time. As a first step in 

this process, we seek to replace it with an unknown function, denoted as 𝐻, resulting in the following 

transformation: 

 𝐵𝑡 = 𝐻(𝐵𝑡−1, 𝜇𝑡) ⋅ 𝛥𝑡 + 𝐵𝑡−1, (Equation 2.4) 

where the function 𝐻 not only depends on the current ignorance 𝐵𝑡−1 but also on additional parameters 

denoted as 𝜇𝑡. These additional parameters may include spatial coordinates, ambient temperature 

evolution, or material properties, all of which are integral to the model. In a similar vein, the function 𝐻 

can be substituted with a combination of two distinct functions, namely, 𝑓 and 𝑔, expressed as follows: 

 𝐻 = 𝑓(𝐵𝑡−1, 𝜇𝑡) ⋅ 𝐵𝑡−1 + 𝑔(𝜇𝑡), (Equation 2.5) 

The functions 𝑓 and 𝑔 serve as the components that the NN will model. Employing this approach is 

crucial to guarantee the stability of the temporal integration. Specifically, by constraining the values of 

the 𝑓 function to be below 0, we aim to prevent the divergence of temporal integration [43]. This 

constraint is strategically implemented to ensure a robust and reliable performance of the NN in 

capturing and processing temporal dependencies. The NN architectures considered for describing 

functions 𝑓 and 𝑔 are both based on the use of LSTM layers combined with a deep dense neural network 

layer, as described in Table 2.3 and Table 2.4 for the ResNet. They were built by using Tensorflow 

Keras libraries. 

 

Table 2.3 - The building blocks that model the function 𝑓. 

Layer Building Blocks Activation 

1 LSTM layer, Hidden size = 8 sigmoid + tanh 

2 Flatten no activation 

3 Dense layer, #Neurons = 16 tanh 

4 Dense layer, #Neurons=Sequence 
size 

relu 

5 Lambda layer returning -1 × inputs no activation 
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Table 2.4 - The building blocks that model the function 𝑔. 

Layer Building Blocks Activation 

1 LSTM layer, Hidden size = 8 sigmoid + tanh 

2 Flatten no activation 

3 Dense layer, #Neurons = 16 tanh 

4 Dense layer, #Neurons=Sequence 
size 

linear 

 

Once the model has been defined, the next step is to train it effectively. However, before initiating the 

training process, it is imperative to preprocess the data to ensure its compatibility with the LSTM 

architecture. In its raw form, the data collected from the sensors typically resembles a tabular structure 

that encapsulates the readings from each sensor at various time intervals. To illustrate this concept 

visually, consider Figure 2.7, which presents a graphical representation of the sensor data. In this figure, 

the temperature readings recorded by each sensor across three distinct time steps are shown. This 

representation offers a clear visualisation of how the data is organised, with each sensor’s temperature 

measurements evolving over time. 

 

Figure 2.7 – Temperature measurements taken at three distinct time steps for each sensor. Each dot is 

a sensor that has been coloured to show temperature as indicated in the scale. The tunnel is shown in 

grey. The coloured line alongside the tunnel and in the tunnel mid-section are temperature data from 

monitoring using fibre optics. 
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To adapt this data for our model, it needs to be transformed into sequences of data. Figure 2.8a 

illustrates the position of all sensors while highlighting three randomly chosen sensors. Additionally, 

Figure 2.8b (top) depicts the temporal evolution of measured temperature for the set of three sensors. 

To enhance the visual representation, we have also included temperature data generated by the 

physics-based model at the same corresponding positions. By using the expression in Equation 3.1, we 

can determine the level of uncertainty denoted as "ignorance," represented by the variable 𝐵. This 

uncertainty is derived by subtracting the solution obtained through physics-based modeling from the 

temperatures measured experimentally. The change in this ignorance level over time is visualised in 

Figure 2.8b (bottom), for the same set of sensors. 

 

Figure 2.8 – Position and evolution curves for three random sensors. 

Once we have successfully defined the data, we are ready to proceed with training the model. The initial 

step in this process involves the proper partitioning of the data. To achieve this, we carefully select the 

first 250 timesteps for the purpose of training and validating our model, while the subsequent time steps 

are reserved for assessing the model’s performance. Within the temporal data set, encompassing the 

initial 250 timesteps, we execute a partitioning operation to create distinct subsets for training and 

validation. This partitioning is accomplished with a specific split ratio of 80% for training and 20% for 

validation. This strategic division allows us to effectively evaluate the model’s performance and refine 

its predictive capabilities. 

When considering the myriad hyperparameters that influence the definition and training of a ML model, 

several key aspects deserve special attention. These encompass the ultimate size of the input sequence 

data, which can often be reduced to enhance flexibility in predictive capabilities. Additionally, the number 

of units residing within the LSTM cells plays a role in determining model complexity and performance. 

Further, the architecture’s overall structure might entail auxiliary layers, necessitating careful calibration 

of the number of neurons in these layers to accommodate potential disparities in the sizes of the primary 

layers. The incorporation of an 𝐿2 regularisation term is important for mitigating overfitting, ensuring the 

model’s flexibility, and preventing excessive complexity. Lastly, one must fine-tune the batch size, a 

parameter that significantly influences the training dynamics, convergence speed, and memory 

requirements of the model. Therefore, meticulous selection and tuning of these hyperparameters are 

fundamental in the quest for effective and efficient ML models. 
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We train a model with a specific set of hyperparameters, enabling subsequent queries. This allows us 

to make forecasts over time by integrating Equation 3.4 into a closed-loop system, resulting in: 

𝐵𝑡 = 𝐻(𝐵𝑡−1, 𝜇𝑡) ⋅ 𝛥𝑡 + 𝐵𝑡−1

𝐵𝑡+1 = 𝐻(𝐵𝑡 , 𝜇𝑡+1) ⋅ 𝛥𝑡 + 𝐵𝑡

⋮
𝐵𝑇 = 𝐻(𝐵𝑇−1, 𝜇𝑇) ⋅ 𝛥𝑡 + 𝐵𝑇−1

 

In the forecasting stage, we integrate insights from physics-based numerical simulations into our data-

driven model. This fusion enhances the simulation’s performance, enabling it to closely replicate real-

world phenomena. The complete time integration scheme is represented in Figure 2.9. 

 

Figure 2.9 – Temporal integration scheme of the hybrid twin approach. 

After forecasting the temperature, it is essential to assess the performance of the associated model. To 

accomplish this, we establish a set of error metrics. Initially, we define the error for a particular sensor 

at a specific time step as follows: 

 𝜀𝑠,𝑡 = (𝑌(𝑋𝑠, 𝑡) − 𝑌̂(𝑋𝑠, 𝑡))
2

, (Equation 2.6) 

where 𝑌 denotes the measured temperature, and 𝑌̂ represents the predicted temperature. In this 

context, 𝑠 serves as an indicator for a specific sensor, and 𝑡 represents an individual time step. 

Consequently, we define the error for a particular sensor as the average of the sum of errors across all 

time steps, which can be expressed as follows: 

 𝜀𝑠 =
1

𝑇
∑ 𝜀𝑠,𝑡

𝑇
𝑡=1 . (Equation 2.7) 

Finally, the model’s error is assessed by calculating the average summation of errors across all sensors, 

where each sensor’s error is considered, as follows: 

 𝜀𝑚 =
1

𝑆
∑ 𝜀𝑠

𝑆
𝑠=1 . (Equation 2.8) 

The choice of the best hyperparameter configuration is determined by the model with the lowest 𝜀𝑚 

value. 
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2.4 Results 

This section illustrates the capabilities of the methodology, which leverages the hybrid twin approach, 

in the context of forecasting repository temperature. The insights and findings presented herein are 

derived from an exhaustive model evaluation process, where various hyperparameters were rigorously 

tested and refined. Through this extensive exploration, we identified the specific set of hyperparameters 

that yielded the lowest error, thus ensuring the utmost accuracy and reliability in our temperature 

forecasts. 

The depicted visualisations in Figure 2.10a offer a comprehensive view of a random sample sensor 

within the test data partition. This sensor, depicted in black, serves as a representation of our data set’s 

real-world observations. In this context, the figure presents the sensor’s spatial position in the 

designated space. Furthermore, it overlays several planes where the physics-based solution is 

projected, specifically showcasing the temperature field at the final time step. On the other hand, Figure 

2.10b illustrates the temporal evolution of temperature. Three distinct curves delineate this evolution: 

the solid black curve represents the actual measured temperature, the dashed black curve illustrates 

the temperature values projected by the PBM, and the dashed red curve signifies the temperature 

predictions generated by the hybrid twin strategy. Upon closer examination of these curves, it becomes 

evident that the integration of the DDM into the PBM significantly enhances its forecasting capabilities. 

This improvement underscores the value of adopting this hybrid approach over relying solely on physics-

based methodologies. It’s clear that this integration leverages the strengths of both data-driven and 

physics-based approaches, resulting in more accurate and robust predictions. 

 

Figure 2.10 – Evaluation of different parts of the model for a random sample sensor within the test data 

partition. 

To obtain a comprehensive understanding of the model’s performance on a global scale, we introduce 

a novel error measure, which can be precisely described as follows: 

 𝜀𝑠,𝑡 = 100 ⋅
𝑌̂(𝑋𝑠,𝑡)−𝑌(𝑋𝑠,𝑡)

𝑌(𝑋𝑠,𝑡)
. (Equation 2.9) 

In Figure 2.11a, the frequency of errors is illustrated when predicting temperatures using the hybrid twin 

method. We looked at different periods and sensors to get a complete view of how well the method 

works over time. Conversely, Figure 2.11b illustrates the comparison between the measured 

temperature and the forecasted temperature using the hybrid twin approach, specifically for the final 

time step. This particular visualisation holds particular significance due to the accumulation of errors 

over the course of the temporal integration process. The last time step can offer invaluable insights into 

the model’s behaviour, encapsulating the culmination of the forecasting performance, making it a critical 

focal point for evaluation and analysis. 
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Figure 2.11 – Various methods for depicting the errors made by the hybrid twin model. 

 

The apparent discrepancy in error rates among specific sensors, as depicted in Figure 2.11b, may 

initially seem higher than expected. However, there is a deliberate rationale behind this observed 

variation. Figure 2.12a displays the positions of three randomly selected sensors, while Figure 2.12b 

portrays the evolution of the measured temperatures on these sensors. Notably, a dashed vertical line 

in the latter figure underscores the time step corresponding to 250 days. After 250 days, the 

measurements appear to be influenced by an event, characterised by a significant temperature increase. 

We establish that this deviation from nominal behaviour is not reflective of the intended model. It is 

essential to emphasise that the choice of the initial 250 timesteps for training is not arbitrary but stems 

from a thoughtful decision. This decision is driven by a significant event within the ALC1605 experiment, 

marked by a pronounced impact on subsequent time step measurements. Despite this deviation, the 

intriguing aspect lies in the potential wealth of valuable insights that can be derived from this behaviour. 

The proposed methodology serves not only as a baseline model representing the expected performance 

of the tunnel and its surroundings but also possesses the capability to raise alarms when a sensor 

exhibits anomalous behaviour due to drifting measurements. This nominal model, therefore, not only 

functions as a benchmark but also provides a means to detect deviations from expected sensor 

performance. 

Nevertheless, we have the opportunity to assess the outcomes generated by the hybrid twin model in 

comparison to those exclusively reliant on physics. This comparison aims to determine whether a 

notable enhancement has been achieved. To facilitate this evaluation, we present the error graph for 

the physics-based solution in Figure 2.13. The visual representation clearly demonstrates a significant 

improvement in overall performance when incorporating additional data-driven insights. Notably, this 

emphasises the concept that the precision of the physics-based solution does not necessarily need to 

be exceptionally high. Instead, it can be substantially elevated through the integration of data. This 

inherent capability has the potential to considerably streamline the modelling process, meshing 

activities, and calculations, ultimately reducing the time investment required. 
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 (a) (b) 

Figure 2.12 – (a) position of the three sensors and (b) the evolution of measured temperature on these 

sensors. 

 

 

Figure 2.13 – Various methods for depicting the errors made by the physics-based model. 
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2.5 Application 

The preceding section has demonstrated the potential of the proposed hybrid twin approach in 

forecasting temperature fields, showcasing its applicability across various industrial scenarios. Of 

particular significance are its applications in sensor diagnosis, as previously mentioned, and its capacity 

to extrapolate temperature data across all spatial coordinates within the domain, extending beyond 

sensor placement locations. 

 Sensor Diagnosis 

A notable industrial application of our system lies in its ability to diagnose and monitor the performance 

of sensors. To showcase this feature, we'll revisit the previously mentioned database, where particular 

sensors experienced disruptions due to an incident within a laboratory setting. This incident involved the 

sudden closure of a security gate, causing a rapid rise in temperature within the controlled environment. 

It's crucial to note that the triggering event can vary widely, from gate closures as exemplified in our data 

set to sensor malfunctions or any unforeseen anomaly. 

Our strategy for malfunctioning sensor diagnosis comprises two stages. First, within our approach that 

harnesses hybrid twins to model the anticipated behavior of the sensor network, any deviation from this 

expected norm signifies an early warning sign of potential malfunction. Figure 2.12a visually represents 

a sensor suspected of malfunction, displaying the sensor's spatial coordinates within the domain. 

Additionally, this figure incorporates three planes representing the projected physics-based solution. 

Figure 2.14b demonstrates three temperature evolution curves: one derived from measured data, one 

based on a physics-based model, and one based on a hybrid twin model. In the measured data curve, 

a sudden temperature increase suggests an incident that compromised the sensor's performance. By 

comparing this curve to the hybrid twin model and establishing a threshold, we can identify when the 

measured data exceeds it, potentially indicating an issue with the sensor. 

Second, to effectively diagnose sensor malfunctions, we leverage the inherent redundancy in our data. 

This redundancy arises from the fact that numerous sensors are positioned closely together. When a 

sensor exhibits signs of dysfunction, this redundancy enables a comprehensive evaluation. By directly 

comparing the behavior of the suspect sensor to its neighboring counterparts, we can uncover any 

anomalies or deviations from expected patterns. This side-by-side analysis proves to be an invaluable 

tool in pinpointing potential issues with the problematic sensor. Figure 2.15 indicates the positions of the 

potentially malfunctioning sensor (in red) along with the closest five neighbors, along with the complete 

sensor database. Conversely, Figure 14 represents the curves of the measured data over time. The 

dissimilar behavior of the target sensor compared to its corresponding neighbors could indicate an actual 

sensor malfunction. 

Once we can identify the malfunctioning sensor, it becomes the responsibility of the operator to 

thoroughly evaluate the situation, as the measured data or hybrid twin model cannot definitively 

determine the cause of the problem. 
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Figure 2.14 – Evaluation of different parts of the model for a random sample sensor that malfunctions 

within the test data partition. 

 

Figure 2.15 – Spatial coordinates for the sensor data set are presented, with the potentially 

malfunctioning sensor visually emphasized in red. Additionally, the surrounding context is provided by 

colouring the five closest sensors. 
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Figure 2.16 – The temperature progression, derived from the collected data, is illustrated for the sensor 

under scrutiny as well as its five closest neighbours. 

 Domain Extrapolation 

In this section, we wish to emphasise another significant industrial application: the potential to expand 

the improved solution across the entire domain, rather than limiting it to sensors alone. This expansion 

will enable us to ascertain the accurate temperature at every point within the rock, not just at the sensor 

locations. 

To fulfil the proposed task, our strategy relies on a conventional Proper Orthogonal Decomposition 

(POD) approach [44, 45]. Specifically, we work with the temperature matrix derived from the physics-

based solution, where rows represent nodes, and columns represent time steps. We decompose this 

matrix as shown in the following equation: 

 𝐀 = 𝐕𝐴 ⋅ 𝚺𝐴 ⋅ 𝐖𝐴
𝑇 = 𝐕𝐴 ⋅ 𝛂𝐴. (Equation 2.10) 

Based on the preceding expression, we have the option to select a limited number of POD modes in 

order to reconstruct an approximate version of the original matrix, as follows: 

 𝐀 ≈ 𝐕𝐴
𝑟 ⋅ 𝛂𝐴

𝑟 . (Equation 2.11) 

Furthermore, the inherent uncertainty arising from the disparity between numerical simulations and real 

measured data, referred to as "ignorance," can be initially represented as a matrix (𝐁̂). This matrix can 

then be decomposed as well. However, it is important to note that in this equation, the matrix exclusively 

contains the sensor data since this is the information that is available and known. 

 𝐁̂ = 𝐕𝐵̂ ⋅ 𝚺𝐵̂ ⋅ 𝐖𝐵̂
𝑇 = 𝐕𝐵̂ ⋅ 𝛂𝐵̂ . (Equation 2.12) 

Similarly, we can selectively retain specific POD modes in order to reconstruct an approximation of the 

original matrix, as follows: 

 𝐁̂ ≈ 𝐕𝐵̂
𝑟 ⋅ 𝛂𝐵̂

𝑟 . (Equation 2.13) 

The vector set 𝐕𝐵̂
𝑟 is defined within each sensor, while 𝐕𝐴

𝑟 is defined across the nodes of the FEM model. 

Since the sensors are confined within the model boundaries, we can derive 𝐕𝐵̂
𝑟 from 𝐕𝐴

𝑟 by utilizing the 

characteristic shape functions of the mesh. This newly obtained set of vectors can be denoted as 𝐕𝐴
𝑟 as 

it specifically relates to sensors. Subsequently, we can integrate this matrix into Equation 2.13, where 

the unknown variables are represented by the coefficients 𝛂𝐵̂
𝑟 . 
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 𝐁̂ ≈ 𝐕𝐴
𝑟 ⋅ 𝛂𝐵̂

𝑟 → 𝛂𝐵̂
𝑟 = (𝐕𝐴

𝑟𝑇
⋅ 𝐕𝐴

𝑟)
−1

⋅ (𝐕𝐴
𝑟𝑇

⋅ 𝐁̂). (Equation 3.14) 

The final step involves using the recently acquired coefficients to extrapolate our understanding across 

the entire domain through the use of the matrix 𝐔𝐴
𝑟, as follows: 

 𝐁 ≈ 𝐕𝐴
𝑟 ⋅ 𝛂𝐵̂

𝑟 . (Equation 3.15) 

To recover the improved model behaviour, we can use a matrix-based form of Equation 3.1. This 

equation involves the summation of matrices 𝐀 and 𝐁, ultimately yielding the actual behavior 

represented by 𝐘. This extrapolation method yields temperature fields, as illustrated in Figure 2.17. 

 

 

Figure 2.17 – Progression of the temperature distribution over time when the enhanced solution in the 

sensors is extrapolated to the whole domain. 

2.6 Conclusions 

In our research, we introduce an innovative method for forecasting the temperature evolution of a HLW 

disposal cell. Our approach involves creating a hybrid twin model that combines physics-based solutions 

with actual measurement data. This method offers several advantages, particularly in long-term 

forecasting, as it grounds predictions in the well-established physics of our application, enhancing the 

reliability of our results. 

Our hybrid twin model is built upon data from the ALC1605 experiment, a demonstrator for the real 

repository. Through this methodology, we aim to gain insights that will enable its application to the actual 

repository. Upon analysing the results, it appears plausible that this approach will perform effectively in 

the final application. 

Furthermore, our study of the demonstrator’s hybrid twin model yields valuable information about the 

sensors within the actual repository. This includes determining the optimal number of sensors to be 

deployed and their optimal placement. We have also demonstrated that the physics-based model need 

not be overly precise, as the modelling of uncertainty can bridge the gap between numerical simulations 

and real-world behaviour. 

In practical application, our model running in the real repository enables the identification of sensor drift, 

which can promptly alert operators to take necessary actions. Additionally, it allows for monitoring 

temperatures in locations far from the sensor installations. 
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3. Full-Scale Emplacement (FE) Experiment 

This section provides a summary of the three test cases undertaken using information and data from 

the FE experiment.  The experiment is described in Section 3.1.  The test cases are then described in 

the three subsequent sections: 

• Section 3.2 describes the test case undertaken by Nagra, which focused on data management 

and access, data quality control, and development of data cleansing tools. 

• Section 3.3 describes the test case undertaken by PSI, which focused on development of 

methods for modelling of the thermal evolution of the experiment. 

• Section 3.4 describes the test case undertaken by UFZ, which focused on the development of 

digital twins of the experiment and the wider URL for visualisation purposes. 

3.1 Description of the Reference Experiment 

Authors: Edgar Manukyan and Martin Schoenball (Nagra), Wilfried Pfingsten and Guang Hu (PSI) 

Editor: Matt White (Galson Sciences) 

The FE experiment simulates, as realistically as possible, the construction, waste emplacement, 

backfilling and early-stage THM post-closure evolution of a spent fuel and HLW disposal tunnel 

according to the current Swiss repository concept [46, 47, 48]. 

The objectives of the FE Experiment are: 

• To investigate spent fuel and HLW repository-induced THM coupled effects on the host rock at 

full scale and to validate existing coupled THM models. 

• To verify the technical feasibility of constructing an emplacement tunnel using standard 

industrial equipment. 

• To optimise the bentonite buffer material design and production, in particular to produce 

bentonite blocks that are capable of resisting the ambient conditions during the emplacement 

and operation phases. 

• To investigate (horizontal) canister and buffer emplacement procedures for underground 

conditions. 

The FE Experiment was designed to replicate the emplacement tunnel of the reference repository design 

at 1:1 scale. The FE tunnel has an inside diameter of approximately 3 m and a length of 50 m, and is 

divided into four zones (Figure 3.1). In the main Test Section of the experiment, three heaters with 

dimensions similar to those of spent fuel and HLW disposal canisters were emplaced on top of bentonite 

block pedestals. The remaining space was backfilled with highly-compacted granulated bentonite 

material (GBM). In this zone, the rock is supported by mesh-reinforced low-pH shotcrete. At the far end 

of FE tunnel is the Interjacent Sealing Section, which comprises a concrete wall, a 2-m-long bentonite 

block wall consisting of manually installed bentonite blocks and a section filled with GBM. In this zone, 

the rock is supported by steel sets. A concrete plug section and an access section comprise the two 

sections closest to the FE cavern, which provides the entrance to the FE tunnel and hosts the monitoring 

data acquisition systems during experiment operation. The experiment began heating in December 

2014 and has been in long-term operation since. 

The experiment is densely instrumented with more than 1,000 sensors in both the EBS and surrounding 

rock mass to monitor the coupled processes during heating phases (Figure 3.2). Most point sensors are 

temperature and pressure sensors. Fibre-optic cables are deployed to monitor temperature using 

distributed temperature sensing (DTS). Other parameters monitored include: 

• Saturation state, which is monitored by measuring relative humidity, suction, gravimetric or 

volumetric water content. 

• Deformation, which is monitored by measuring convergence (prior to EBS emplacement), 

displacement or inclination (in the geosphere). 

• The concentration of gas phases and pH. 
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Figure 3.1 - Overview of the FE experimental setup Mont Terri URL in Switzerland [47]. From left to right 
is the FE cavern, where all data acquisition and interrogators are installed, the concrete plug that closes 
of the heated section, the three heaters as well as an interjacent sealing section with steel supports. 

 

 

Figure 3.2 - The main instrumentation phases of the FE experiment [47]. The figures at the top illustrate 
the layout of boreholes around the 50-m-long FE tunnel. The figures at the bottom show simplified 
representations of the instrumentation cross-sections within the 2.5–2.7-m diameter FE tunnel. 
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3.2 Test Case Description and Results: Nagra 

Authors: Edgar Manukyan, Martin Schoenball and Christoph Wetter (Nagra) 

Editor: Matt White (Galson Sciences) 

 Introduction and Objectives 

The FE experiment provides a comprehensive data set with lessons learnt from almost a decade of 

long-term monitoring. This section discusses some selected aspects of operating a complex monitoring 

system over such a time frame. The examples and approach developed and discussed below range 

from calibration of sensors, inferring drift in (fibre-optic) sensors owing, to system deterioration and 

identification of other types of sensor failure. 

 Data Management and Data Access 

The monitoring data of the FE experiment is stored in an online database, the FE Information System 

(FEIS), that provides easy access for Nagra and its external partners. The FEIS tool is browser-based 

and provides relevant documents and data sets, maintenance operations as well as basic visualisations 

of the online data. Some preprocessing of the data is performed within the data acquisition system and 

the FEIS database. This includes conversion of the measured quantities into the target parameter 

through application of calibration relations. For the fibre-optic data this also includes a live calibration of 

each measurement against reference data that is acquired simultaneously. However, at the time of 

original implementation of the FEIS, no automated access to the actual data was foreseen, and the 

browser interface has limited capabilities for in-depth analysis of the monitoring data. 

Therefore, to provide convenient access to the FE data to MODATS partners, it was decided to 

implement an application programming interface (API) to access the data. The system works as a 

wrapper that improves security by using a custom data port for MODATS users and a separate data 

port for the Nagra FEIS database connection. The data is accessed through the API and structured 

query language (SQL) queries, which provides access to only the desired data sets, and exposes only 

the functions and read-only table views required to retrieve the FE data. The FE database tables and 

data cannot be deleted or modified. Libraries to access the database exist for several development 

platforms, including Python, Matlab and C#. Separating the FEIS and the MODATS databases also 

helps to limit performance issues on the MODATS database from affecting the FEIS (for example, a 

MODATS user’s query that runs for hours). 

 Calibration and Quality Control of Fibre-Optic Monitoring Data 

The DTS monitoring of the FE experiment has been ongoing since December 2014. In this sub-section, 

some key lessons learnt from operating such a system under conditions relevant to repository operations 

in the long-term are identified. 

Eight fibre optic (FO) cables with a total length of 2,160 m were installed on the tunnel wall as well as in 

several boreholes. Three interrogators were used during the first eight years of the experiment. In 2014, 

a Smartec DiTemp interrogator unit as well as a Neubrex NBX7020 unit were installed. In 2019, a Silixa 

Ultima S interrogator unit was added. The Smartec and Silixa units employ Raman scattering to measure 

temperature. The Neubrex unit uses Brillouin scattering, jointly measuring temperature and strain. 

Observations in the first eight years showed that Brillouin scattering is less practical for temperature 

monitoring under repository conditions than Raman scattering, since temperature measurements can 

be affected by strain built up inside the FO cables [49]. Here we focus on the data acquired by the 

Smartec and Silixa units. 

It is known that DTS measurements are affected by external factors. Examples are the operating 

temperature and conditions of the interrogator unit, physical conditions, cleanliness of the FO cable 

connections, and the presence of strain or sharp bends at any location along the fibre [50]. These factors 

influence the Stokes (S) and Anti-Stokes (AS) raw values measured by the interrogator, as well as 

calibration parameters used for converting S and AS values to temperature [51]. 
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Between December 2014 and April 2018, temperatures were calculated using static calibration 

parameters, determined at the start of the experiment. DTS accuracy, as compared with PT1000 point 

sensors, in that time span was around 1.5 °C (Figure 3.3, top) with all of the FO data higher than the 

PT1000 data.  

 

 

Figure 3.3 – Panel a: Temperature evolution from DTS as well as point sensors. Seasonal trends are 
noticeable. Panel b-d: Yearly trend and losses on DTS raw data, and a similar trend in humidity. Panels 
e-h: Evolution of calibration parameters ∆a, C and γ (see below) as well as calibration bath 
temperature.Red dashed line indicates period when the calibration process failed owing to calibration 
bath heater failure, this further affects the calibration parameters. Also, the yearly trend is visible in the 
AS/S (anti-Stokes/Stokes) ratio (panel b) as well as in the ∆a parameter (panel e). 

 

In April 2018, after 3 years of continuous operation, two 220-litre calibration water baths, providing 

known hot and cold reference temperatures, were installed inside the FE Cavern. Calibration was 

performed following the procedure in [51] (Figure 3.4). This process improved the DTS accuracy from 

1.5 °C to 0.25 °C as compared with PT1000 point sensors (Figure 3.3, top). This calibration process has 

remained in use since April 2018. During this period, calibration was not working properly for 211 days 

or 12% of the run-time, owing to failures of the calibration bath heater. This is visible in the 𝛾 and C 

parameter in Figure 3.3, which scatter in periods when the heater was not working properly. During 

these periods, the determined calibration parameters were wrong and ultimately, erroneous temperature 

measurements were reported.  

Heating tests using heatable fibres are performed yearly to ensure proper functioning of all systems. 

Optical time domain reflectometry (OTDR) measurements of cable attenuation are also carried out 

yearly, e.g., to detect changes in FO cable performance. Overall trends show increasing attenuation 

(i.e., step losses) at splice positions over time, which could be linked to aging effects. Additionally, yearly 

maintenance work is performed on the Smartec DiTemp interrogator unit including fan-filter replacement 

and dust removal. During the first eight years of operation, all three interrogators worked without failure.  
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The display of the calibration parameters along with the derived temperature measurements and 

comparison with reference measurements of point sensors (Figure 3.3) shows that calibration 

parameters as well as interrogator raw data (Stokes, Anti Stokes) can be used to gain information about 

the state of health of the DTS system. Calibration parameters are based on physical properties, for 

example, cable attenuation ∆𝑎 or interrogator sensitivity C [51]. In theory, one should expect the three 

calibration parameters to be constant over time for stable conditions. The FE experiment showed that 

this is not the case, and small but significant temporal changes in the calibration parameters were 

observed in the first four years following installation of the calibration water baths. Calibration 

parameters are sensitive to DTS internal factors, for example, a change of interrogator sensitivity as 

well as external factors such as seasonal trends caused by atmospheric conditions. We propose that in 

case a calibration process, outlined by [51], is used, the obtained calibration parameters can also be 

used to monitor the state of the DTS system. Stable calibration parameters are a good performance 

indicator for DTS measurements. Changes in the automatically determined calibration parameters 

correlate well with changes made to the system (e.g., maintenance) but also apparent deterioration of 

cable splices. 

 

Figure 3.4 - DTS experimental design. Duplexed single-ended configuration, in which FO cable gets 
routed twice through two reference baths for which the temperature is known. Those reference 
temperatures can be used to calibrate the raw DTS temperatures. In the FE experiment, Reference 
Section 1 is designed as an ambient bath (~19 °C) and Reference Section 2 as a heat bath (65 °C) [50]. 

Seasonal fluctuations in the raw data, the calibrated temperatures, and one of the calibration parameters 

(∆𝑎) were observed for individual fibre optic cables. These artefacts could be linked to the locations of 

splices in the FO cables, causing step losses. While the calibration method used can correct for 

continuous signal losses along the fibre (which may indicate cable aging), it cannot correct for step 

losses. The observed seasonal trends suggest that atmospheric conditions impact the fibre splices. DTS 

temperature anomalies (compared to point sensor references) reached amplitudes of up to 2 °C. 

Therefore, we suggest that those splice positions are thoroughly monitored using OTDR or comparable 

methods. 

 Approaches for Data Cleaning 

3.2.4.1 Need for Data Cleaning 

In the FE experiment, there are more than 1,000 sensors providing monitoring data. Despite efforts to 

acquire high-quality data, we observe malfunctioning of the monitoring system over time. Examples of 

malfunctioning behaviour include no data, data gaps, spikes, unexpected constant values (freezing of 

values), increased noise levels, unrealistic data trends, and unreasonable data values. These 

malfunctions are checked on-site. For some of them, the cause can be fixed by manual intervention 
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(e.g., cable connections to the data acquisition system have become loose). Some malfunctions recover 

over time on their own without providing a hint on the cause, and there are malfunctions that result in 

permanently false measurement values. 

Erroneous data have only limited value and are a nuisance when it comes to modelling and visualisation. 

Hence the data need to be cleaned and bad data removed. Nagra’s approach is to not manipulate the 

recorded data. This means that no data is deleted, modified, or added to the database. Instead, the data 

cleaning algorithm puts flags to each single data point identifying its status as either valid or discarded 

(because of a specific criterion). This approach makes sure that data is not modified, introducing 

subjectivity (e.g., interpolation or extrapolation), is fully auditable, and still provides the possibility to view 

the entire data set, including differently flagged data. It also means that data can be readily selected for 

different uses. In the discussion below, cleaning and flagging are used somewhat interchangeably. 

3.2.4.2 Initial Data Cleaning 

Considering the large amount of data produced in the FE experiment and the large amount of data 

expected to be acquired in future monitoring systems, automated and robust data flagging algorithms 

are needed. Before starting more advanced checks, clearly erroneous data are identified and flagged. 

These are spikes and implausible data values. In the plausibility check we determined hard limits on the 

measured parameters beyond which the recorded values cannot be true. For instance, in the FE 

experiment, it is not possible to have negative temperatures. Spikes are identified by checking if there 

is a sharp change in measured temperature (the difference in value is at least 1 °C and the rate of 

change is at least 1 °C/min) and the subsequent value is again a sharp change but with opposite sign. 

Within MODATS, two different concepts for advanced data validity checking were implemented. These 

two concepts are described below.  

3.2.4.3 Advanced Data Cleaning – Sensor Grouping 

In the first approach, advantage is taken of the presence of many sensors and close-by sensors are 

analysed jointly (in this instance nearby refers to sensors measuring the same parameter in the same 

component of the multi-barrier system). The idea behind this is that, within a single group, sensors 

should show similar data trends. The algorithm checks all data points starting from the installation time 

of the sensors. It collects relative temperature changes for all sensors. If a relative data change from a 

sensor is larger than the sensor accuracy and is calculated to be an outlier (the value is more than three 

scaled median absolute deviations from the median, with the scaling factor of 1.4826, which connects 

median absolute deviation to standard deviation in case of normal distribution) compared to relative data 

changes of its group members, then the data point is flagged as an outlier. 

Figure 3.5 shows the effect of data cleaning before and after the removal or invalid data points of 40 

temperature sensors within the BFEA010 borehole. The data cleaning algorithm, performing plausibility 

check, spike removal and outlier identification, can significantly reduce the erroneous data points. The 

drawback of this algorithm is the need for several sensors that are either located close by or are 

expected to show similar behaviour (e.g., sensors in a borehole away from heaters). This requirement 

for sensor redundancy could be prohibitive for the actual repository. Furthermore, the number of 

functioning sensors will inevitably decrease over time owing to sensor failure. In the case of the FE 

experiment, we also noticed that we could not effectively group together all sensors within a specific 

volume. The two issues we identified are: 

• Different sensor types having different accuracy and resolution. 

• Different sensor groups having different recording time stamps and intervals. 

It is important, therefore, to consider the compatibility of data from different sensors when designing 

monitoring systems. 
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Figure 3.5 - Temperatures of selected sensors in BFEA010 borehole before (top panel) and after (middle 
panel) removal of outliers. Sensors were selected to illustrate a range of sensor behaviours including 
flawless (red & black), containing atmospheric influences (cyan) as well as various anomalous sensor 
behaviour (green, pink) or combinations thereof (orange). Each coloured dot in the top two panels 
corresponds to a data point measured by a single sensor. Locations of temperature sensors are 
indicated with respectively coloured dots in the bottom panels. The blue dots indicate the locations of 
sensors for which data are not plotted but were used in the analysis. 
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3.2.4.4 Advanced Data Cleaning – Numerical Modelling 

In the second approach, data from each sensor is checked separately using the results of numerical 

modelling. Ideally numerical modelling would show the same data as each sensor and any mismatch 

would be due to sensor misbehaviour. However, there are several reasons why the modelled data is 

different to the true values. Possible reasons include: 

• The model is only an approximation of a more complex reality. 

• Modelled data is temporally and spatially interpolated to fit sensor time and location. 

In addition to all kinds of erroneous data, the recorded signal also has peculiarities that are real but are 

often not considered in the numerical models. Such events include: 

• Various QC tests in the beginning of the experiment. 

• Electricity breakdown in the laboratory leads to heaters switching off and reduction of 

temperatures. 

Hence, the flagging algorithm that uses results of numerical modelling needs to be robust to correctly 

flag the data. Like in the previous approach, the checking is done data-point by data-point starting from 

the first recording. Changes in the value between a new data point and the last valid data point are 

compared with the change expected from numerical modelling. As the modelling data is not expected 

to match reality exactly, lower and upper bounds for the next point measurement are extracted from 

modelling. Furthermore, room for inaccuracy is allowed owing to the accuracy of sensors. A data point 

is considered valid if the change in recorded data is within the bounds extracted from modelling. Further, 

a small gradient (0.1 °C/day) was implemented on both upper and lower bounds in order to recover from 

falsely approved data that drifted away from true temperatures. For the cases where data points were 

identified as possibly invalid, the algorithm first checks if the previous valid data point was frozen 

(showing exactly the same value for some period). A sketch of the concept is shown in Figure 3.6. For 

the cases where frozen data were identified, the data were marked as such, and validity was checked 

again using the last valid data point. Figure 3.7 shows an example of data flagging results for two 

sensors. The algorithm performs well in identifying and flagging various types of noise. Nevertheless, 

there are cases where good data points were identified as invalid and cases where poor data were 

identified to be good, both of which were identified via expert review of the data. Although such 

misjudgements cannot be entirely eliminated, we believe that the algorithm can be further improved. 

 

 

Figure 3.6 - A sketch of the concept showing how the limits are calculated for checking the validity of 
the next data point. 
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Figure 3.7 - Two columns show results of data flagging for two sensors. The results of plausibility check, 
spike check and noise identification are shown on the first, second and third rows, respectively. First 
row shows all recorded data, while the second and third rows show only recorded data that has remained 
after data cleaning step indicated in the plot above. The bottom row shows the location of respective 
sensors. Note changes of scale between some plots and that because of the plotting order some of the 
data points could be hidden behind data points with different colour. 
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 Conclusions 

We have made several improvements for validating and qualifying monitoring data of the FE experiment. 

On the practical side, we implemented access to FE database through Python and Matlab scripts, which 

maintains the necessary security over the full database. Such direct (easy) access is essential for post-

processing data using algorithms developed externally of the FEIS.  

On the monitoring side we had a close look at both DTS and point sensor temperature data. Our 

research showed that DTS calibration parameters together with interrogator raw data can be indicators 

for the state of health of a DTS system. In the FE experiment we identified that deteriorating cable 

splices can cause temperature anomalies resulting in seasonal trends. This finding suggests that in the 

monitoring system the number of splices should be minimal. Furthermore, despite the presence of 

calibration baths, nearby measurements of temperatures near DTS provide a means for quality control 

of DTS signals in the future.  

For point sensors we have developed two algorithms for cleaning temperature data. Both approaches 

follow the principle of not adding or deleting any measured data point from the database, but rather 

flagging them. One approach makes use of nearby sensors to identify anomalous temperature values 

and the other approach uses data from numerical modelling. Both approaches performed well in flagging 

the untrustworthy data as invalid and trustworthy data as valid. Nevertheless, it was not possible to 

obtain 100 % flagging accuracy. Furthermore, the first approach requires presence of several sensors 

in close vicinity, which is possible for monitoring URL experiments but could be a limitation for a real 

repository where monitoring may be sparse. While the results of this work are encouraging, we believe 

that it is worthwhile to test the algorithms on other experiments and other types of data to further improve 

them before implementation in a real repository. For now, expert opinion remains an important factor for 

evaluating monitoring data. 
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3.3 Test Case Description and Results: PSI 

Authors: Guang Hu and Wilfried Pfingsten (PSI) 

Editor: Matt White (Galson Sciences) 

 Introduction and Objectives 

Within MODATS, our focus is on the assessment of sensor data, especially temperature and humidity 

sensor data and the related modelling of the temperature evolution in the FE experiment tunnel near-

field after switching on heater power using all kind of geometrical and material properties information 

available from the experimental setup and the emplacement description. PBM and DDMs have been 

developed and compared to FE temperature and humidity sensor data. Efficiency and robustness of 

different DDMs have tested and the best performing are compared with PBM and possible applications 

for a temperature digital twin are given, e.g., sensor failure identification or identification of dominating 

parameter uncertainties. 

 Data Treatment and Management 

Temperature and relative humidity sensor data delivered by Nagra were used in this study. The data 

were extracted from the FEIS database and were delivered and analysed in two steps. 

The initial sensor data covering the period from 15 December 2014 (start of heating) to 30 June 2017 

(548 days) were used: 

• For setting up PBMs and DDMs and data-driven models. 

• To develop a general workflow for data analysis consisting of data assessment, data analysis, 

application of data within PBMs and DDMs, and data visualisation. 

• To assess the specific FE sensor data for comparison and input to PBM and DDM respectively. 

Direct access to the Nagra FEIS database was not possible owing to firewall restrictions at PSI. 

Therefore, sensor data were supplied and stored in Excel sheets. Upon receipt of the data, not-a-number 

(NaN) data were deleted. In addition, several procedures to “clean” the raw data were tested, e.g., 

deleting extreme spikes, but finally the raw data were used in the test case, except for deleting NaN 

values, which avoided issues associated with justifying which data should be used or ignored.  

The second data set, which covered the period from 1 July 2017 to 1 March 2023 (both periods in total 

about 3,000 days) was handled and used in the same way. Both together yield a data file of 1.9 GB.  

 Physics-Based Modelling (PBM) 

The heat transport equation (Equation 3.3.1) describes the temperature evolution of the thermal 

processes occurring in the FE experiment. As heat transport in a porous medium is dominated by 

conduction [52, 53], a reduced heat transport equation has to be solved for the PBM:  

 −𝝀𝐢 (
𝝏𝟐𝑻

𝝏𝒙𝟐 +
𝝏𝟐𝑻

𝝏𝒚𝟐 +
𝝏𝟐𝑻

𝝏𝒛𝟐) + 𝝆𝐢𝑪𝐏,𝐢
𝝏𝑻

𝝏𝒕
+ 𝑸 = 𝟎 (Equation 3.3.1) 

where 𝜆i is the thermal conductivity of the medium i; T is the temperature; x, y, z are the coordinates 

correspondingly; 𝜌i is the dry density of the medium i; 𝐶P,i is the specific heat of the medium i; Q is the 

specific heat source.  

For the 3D model setup, a high spatial resolution was chosen to reproduce the material properties for 

bentonite blocks, GBM, excavation damage zone (EDZ), clay host rock, heater wall and concrete in as 

much detail as possible, yielding a 3D material parameter distribution for the heat transport model. 

These parameter distributions are partly time-dependent, because important parameters such as the 

relative humidity of the GBM have a significant impact on heat transport and temperature evolution in 

the vicinity of the heaters (tunnel near-field). Near the heaters, initial heating causes humidity to 

decrease owing to vapour transport away from the heaters, whereas near the clay humidity away from 

the heaters is increasing. This means that there are different transients (temperature evolutions versus 
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time) for humidity (and related resaturation) evolution in the GBM depending on the location in the GBM 

influencing the thermal conductivity evolution, which depends also on the initial GBM dry density 

distribution. 

We identified 40 pairs of sensors for temperature and humidity located at the same position to have 

correlated temperature and humidity information (Figure 3.8, also important for the DDM). This paired 

sensor information was used to generated a ML humidity surrogate model for thermal conductivity of 

the GBM. It includes a thermal conductivity relationship for the GBM as a function of humidity, the initial 

GBM dry density distribution (taken from slope scans for each of the GBM sections, Figure 3.9), a 

gravitational term, a cylinder symmetric tunnel term and a sinusoidal heater location term. The result is 

a ML input of thermal conductivity of the GBM into the PBM, i.e., a time and space dependent (surrogate) 

function of thermal conductivity of the GBM into the PBM (for details see [33]).  

 

Figure 3.8 - Schematic diagram of positions of 20 pairs of temperature/saturation degree sensors and 
10 temperature sensors in the upper and lower half of the GBM and heaters. (Red dot series of sensors 
represent pairs of temperature/saturation sensors #1~#16 within the upper GBM, black dot series of 
sensors indicate pairs of temperature/saturation sensors #17~#20 within the lower GBM, green dot 
series of sensors represent 10 temperature sensors (one temperature sensor in the clay, C1, is not 
shown) according to [33]. 
 

 
Figure 3.9 – Location of 3D slope scans (red lines) and calculated bulk dry densities of the GBM for 
each section between the slope scans in the backfilled FE tunnel [47]. 
 

A sensitivity analysis on mesh size and model domain size was undertaken to demonstrate a reasonable 

PBM set-up. Meshes with 1,253,142, 1,719,617 and 2,274,148 nodes were tested [33]) and the related 

influence of assumed temperature boundary conditions used for model validation (Figure 3.10). For the 

heat transport initial and boundary conditions, the temperature gradient in the clay host rock was chosen 

to be 0.06°C/m [54], whereas the power output from the heaters was taken from direct measurements 

(see Figure 3.11). 
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With this setup, we calibrated the PBM with 10 representative temperature sensors distributed in the 

near-field (near Heater 1, Heater 2 and Heater 3, in the GBM at several distances from the heaters, and 

in the host rock). Good agreement was achieved comparing temperature sensor data and modelled 

temperature data [33], i.e., during the initial phase, the maximum relative error was lower than 9% for 

all sensors, which might be influenced by the initial power switching of the different heaters. Later on, 

the maximum relative error was less than 3% for all sensors and less than 1% for individual sensors 

(Figure 3.12).  

 

Figure 3.10 - Perspective view and enlarged view of 3D geometric model of the FE experiment. 3D 
perspective view (top) and enlarged view (bottom) with discretisation according to material properties 
(layers of density profile are shown in local mesh near the heater according to Figure 3.9) modified from 
[33]. 

 

Figure 3.11 - Boundary conditions with heat power of three heaters (PH1, PH2, PH3) from 15 December 
2014 to 15 June 2016 (548 days) according to [33]. Dashed lines indicate interruptions to the heater’s 

power supply. 
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Figure 3.12 - Comparison of temperature evolution T and relative errors between calculation and 
experimental data at positions of 6 representative sensors over 1.5 years (heater positions: H1-2 (top 

left), H2-1 (top right), H3-2 (middle left), G1(middle right), G3 (bottom left), C1 (bottom right) according 

to Figure 3.9 [33]. 

 

After calibration of the PBM, known parameter uncertainty ranges (parameter ranges taken from 

literature, see [33]) and experimental setup details were used to predict the temperature at specified 

sensor locations, and hence to investigate the influence of individual heat transport parameter 

uncertainties. Multiple PBM calculations with defined uncertain parameter sampling using an orthogonal 

test method [55] have been undertaken for seven design parameters (heat power of the three heaters 

(PH1, PH2, PH3), thermal conductivities of the GBM (λGBM), the EDZ (λEDZ), the heater canister (λcanister), 
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and the bentonite block (λblock)) yielding a matrix of 32 orthogonal test cases. Figure 3.13 shows that 

different parameters have different influences on the temperature evolution at different locations in the 

near-field. A small p-test value or a large range value indicate dominant parameter influence. Therefore, 

such “dominant design parameter analysis” can help to design a targeted temperature evolution or a 

targeted maximum temperature at a certain location in the near-field of a real repository by choosing or 

designing e.g., an appropriate heat power (amount of fuel in a canister) or an appropriate thermal 

conductivity of the GBM (initial GBM dry density distribution). 

In addition, multiple PBM calculations with minimum and maximum uncertainty parameter values yield 

a bandwidth for the calculated temperature as a function of time at different locations. This predicted 

temperature bandwidth was used to identify sensor data outliers or abnormal data, i.e., measured 

temperatures that are out of the calculated temperature bandwidth, knowing that predicted temperatures 

should not differ significantly from measured values, when comparing them with a validated PBM and 

known range for individual parameters uncertainties (Figure 3.14). 

 

 

Figure 3.13 - Results of dominant parameters analysis for transient temperature evolution for sensors 
H1-1, G3 and C1 (compare Figure 3.8 for sensor locations). 
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Figure 3.14 - PBM calculations with high and low parameter values yielding temperature bands, which 

should include the temperature sensor data exemplified for sensor at positions of sensors H1-1 and G3, 

positions according Figure 3.8 (modified from [33]). 

 Data-Driven Modelling (DDM) 

In order to apply an optimised DDM to the FE experiment sensor data, we performed a review on existing 

ML methods applied in the area of nuclear energy [32] and identified several ML methods that could be 

applied to the FE experiment temperature data. We used different data sets with respect to the period 

covered and the parameters monitored (temperature (T) and relative humidity (RH)) and applied several 

ML methods. In total, eight ML models were evaluated in the prediction of temperature and relative 

humidity [33]. The models evaluated were the k-nearest neighbour (kNN), decision tree (DT), support 

vector machine, random forest (RF), LSTM, artificial neural network (ANN), polynomial regression (PR), 

and physics-informed ML (PIML, a combination of kNN with the heat power (P) or power density (Q)). 

The performance of the tools was evaluated using: 

• Statistical methods, including mean absolute error (MAE), mean squared error (MSE), and 

Pearson's r coefficient (R). 

• Computational efficiency tests including training time, memory and CPU usage. 

• Model robustness analysis, parameter sensitivity analysis and parameter evolution, which 

reflect the independency of the learning data set (which data are used for learning and which 

for testing) or the ratio of training and test data (50% learning, 50% testing or 70% learning, 30 

% testing) on the calculated results.  

This yields an optimal ML tool for the FE temperature sensor data with respect to practical implications 

and applications, for example, preparation of learning data sets and assessing test data sets. All the 

models were trained to predict time-dependent temperature and relative humidity in 3D for 1.5 years 

following the start of heating. 40 pairs of temperature and relative humidity sensors represent the training 

and testing data set for the different ML methods. The training and testing are described in more detail 

in [56]. For the PIML methods, heater power as a function of time (for all 3 heaters) has been used as 

an additional physics-based boundary condition (Figure 3.15).  

 



EURAD Deliverable 17.6 – Advancements in Monitoring Data Management, Modelling and Visualisation 

EURAD - Monitoring Equipment and Data Treatment for Safe Repository Operation and Staged 
Closure, Deliverable 17.6 
Dissemination level: Public 
Date of issue of this report: 07/05/2024  Page 42  

 

Figure 3.15 - Input and output parameters for ML methods and constraints in case of PIML [56]. 

According to the performance indicators MAE, MSE, and Pearson's r coefficient R, the PIML, kNN, and 

ANN models demonstrate good accuracy when compared to the other ML models. High computational 

efficiency is observed for the PIML and kNN models due to low training time and use of computing 

resources (Figure 3.16). PIML, kNN and ANN show robust stability in predicting temperature and relative 

humidity as well as sensitivities in the conducted sensitivity analysis (see [56] for further details). 

 

 

Figure 3.16 - Values of performance indicators MSE, MAE and R with 8 models of ML on temperature 
(T), relative humidity (RH) and for training-test ratio of 70%-30% [14]. 

 

The four best performing DDMs (PIML, kNN, LSTM and ANN) were then compared with representative 

sensor data for temperature (Figure 3.17) and relative humidity for the first 548 days of heating. There 

is a general good agreement between the models and the temperature and relative humidity sensor 

data. Early and late temperature data show some discrepancies from sensor data. However, most 

obvious is that only the PIML method reproduces the temperature data near Heater 3 well, all other 

methods fail for the initial heating phase, and the LSTM method appears to be the one with the largest 

differences. For this reason, we chose the PIML method (combined kNN with heat power P boundary 

condition) for further use in the DDM digital twin. 

In [33] several DDM methods were used to access abnormal sensor data for many of the temperature 

and humidity sensors and identified a lot of sensors for which predictions in the near future were 

successful [14]. However, there were also sensors for which predictions were obviously wrong, which 

depends also on the individual DDM methods applied (Figure 3.17). So far, no clear dependency could 

be identified.  
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Figure 3.17 - Comparison between experimental data and predictions of temperature and relative 
humidity with PIML, kNN, LSTM and ANN models near Heater 1 (top left), near Heater 2 (top right), near 

Heater 3 – bottom left) and in the clay (bottom right).  

 

 Digital Twin 

Two digital twins for temperature for the FE experiment were developed, a PBM and a DDM, 

respectively. Both models are described above, where for the PBM some components of a digital twin 

are already presented: the dominant parameter identification and the identification of sensor data 

outliers or abnormal data. 

3.3.5.1 PBM Digital Twin 

The ML-assisted PBM has been validated for sensor data up to 548 days, boundary conditions, and 

initial and evolving heat transport parameters and might be used for modelling longer periods than the 

first 548 days as a test for its prediction capability. However, the ML-assisted part for times larger than 

548 would be ignored. The only additional input for modelling longer periods would be humidity sensor 

data to consistently describe the evolution of the thermal conductivity of the GBM appropriately, i.e., the 

surrogate function for the thermal conductivity has to be updated by upcoming humidity sensor data for 

times larger than 548 days.  

As described above, the ML-assisted PBM of heat transport already allows the identification of dominant 

parameters using variance and range analysis. Parameters such as the heater power, thermal 

conductivities of the GBM (λGBM), the bentonite block (λblock) and the canister (λcanister) have been shown 

to dominate the temperature evolution at different locations in the near field. In addition, the parameter 
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uncertainty ranges of ±10% for λGBM and λblock are analysed and bands of temperature uncertainties are 

compared with temperature sensor data, which allows sensor data assessment including identification 

of faulty sensor data (see Figure 3.14). The identification of faulty data is based on an assumption that 

that temperature shows a smooth evolution in space and time for such a near-field system; the PBM is 

validated for the time interval of interest; and the assumed parameter uncertainty is reasonable. The 

first step in the direction of a digital twin for the FE experiment is to use “incoming sensor data” for 

improved thermal conductivity calculations in PBM prediction of future temperature evolution in the 

tunnel near-field. The “incoming sensor data” are here mimicked by successively taking into account 

new data from the database up to about 3,000 days. Here we used data within a period of about 500 

days, because direct access to data was not possible due to firewall reasons and for simplicity. However, 

the procedure of taking data from the database is applicable up to periods of seconds, generating each 

time an updated surrogate model for thermal conductivity as input in the PBM allowing modelling 

temperature evolution in the near-field. Herewith, continuously incoming new data will be used to feed 

the ML-assisted physical modelling framework allowing improved PBM temperature predictions and 

improved sensor failure identification. 

An example for PBM of the temperature evolution for various locations is given in Figure 3.18 for a 

validated ML-assisted PBM up to 548 days and a continuously updated surrogate function for the 

thermal conductivity of the GBM up to 3,000 days using “incoming” humidity data in time steps of about 

500 days. Differences might be expected to be minor because the surrogate model for humidity includes 

already a wide range of humidity values measured within the first 548 days for different locations. 

However, at sensors near the heater the humidity may develop quite differently from sensors further 

away from the heaters. For the surrogate function for the thermal conductivity of the GBM deduced from 

humidity sensor data for the first 548 days it is obvious that at some locations temperature decrease is 

calculated after reaching a maximum temperature. This would be the result of increased thermal 

conductivity with increasing humidity in the GBM yielding a more efficient cooling. Taking into account 

humidity sensor data within the GBM for times larger than 548 days up to about 3,000 days, a different 

behaviour is predicted (Figure 3.18). As shown in Figure 3.19 for representative humidity sensors, the 

humidity changes much more in the first 548 days than in the later 2,500 days. Therefore, the surrogate 

function for the thermal conductivity in the GBM needs to be updated every 500 days approximately to 

correctly consider the humidity evolution in the GBM (a daily update would have been also successful, 

but not performed owing to time restrictions). An extrapolation of humidity data from the first 548 days 

only would yield too large thermal conductivities in the GBM at later times. Such a procedure of stepwise 

use of incoming sensor data (500 days steps) replicates a PBM based digital twin improving stepwise 

temperature predictions into the future. 
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Figure 3.18 - PBM calculations for the temperature evolution at different sensor locations (x, y, z in 
brackets, and sensor name) in the FE near-field without (upper graph) and with (lower graph) an updated 
surrogate function for the thermal conductivity of the GBM. 
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Figure 3.19 - Comparison of DDM of experimental humidity data and related DDM predictions into the 
near future at different humidity sensor positions. (compare also Figures 3.20-22). 

3.3.5.2 DDM Digital Twin 

For the DDM digital twin, the best performing DDM (PIML) was selected and applied stepwise to data 

from individual temperature and humidity sensors for periods up to 548 day, 1000 days, 1500 days, 

2000 days and 3000 days. The results are shown in Figure 3.20 and Figure 3.21 exemplified by selected 

sensors for different DDM learning and testing times. The DDM reproduces well all temperature sensor 

data up to 548 days, even if there were sensor data failure identified using the PBM, and temperature 

spikes were reproduced by the DDM (Figure 3.21). 

When it comes to predictions with the DDM digital twin, i.e., predicting in future times for which no data 

have been used for learning, then predictions seemed to be wrong in some cases (Figure 3.22). 

Predictions show no smooth temperature behaviour but edges from last learned data point to predicted 

future times. Also, sensor data with abnormal behaviour (spikes, longer temperature drops) seemed to 

be well reproduced by our DDM, which means that sensor data failure or abnormal data identification is 

not as straightforward for the DDM digital twin as for the PBM digital twin. 

3.3.5.3 Future Work and Applications 

The same digital twin framework has been used with a PBM and a DDM for temperature and relative 

humidity (DDM only) allowing just an exchange of the modelling tool, which would also allow a digital 

twin based on a combination of both, PBM and DDM (e.g., sequential or iterative).  However, the 

predictive capability or abnormal data identification of a DDM based digital twin is limited due to the 

limited learning period, nevertheless, the DDM based digital twin might be much faster with respect to 

computational performance and an appropriate use of both PBM-based and DDM-based digital twin 

might be the most efficient one.  

It should be noted that such a digital twin framework could be applied to a repository and help to design, 

optimise, and define the monitoring setup as well as contribute to the assessment of a repository 

providing detailed understandings of the performance behaviour of a DGR using parameter sensitivity 

and uncertainty analysis.  
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Figure 3.20 - DDM digital twin calculations for the temperature evolution at different sensor locations in 

the near-field for data up to 548 days learning and testing time. 
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Figure 3.21 - DDM digital twin calculations for the temperature evolution at different sensor locations in 

the near-field for data up to 3000 days learning and testing time. 

 

 

Figure 3.22 - DDM digital twin calculations for the temperature evolution at different sensor locations in 

the near-field with predictions using learning and testing time represented by the blue lines. 
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 Summary and Conclusions 

A concept of ML-assisted physics-based 3D heat transport modelling for the FE experiment has been 

developed and verified. ML is applied in this context to humidity in the GBM yielding a physically and 

NN-based surrogate model for the thermal conductivity of the GBM. The surrogate model is required to 

calculate the temperature evolution in the FE tunnel near field. The data could be described as sparse, 

in relation to the full 3D model data set available. Results of ML-assisted heat transport calculations are 

validated with the large experimental data set of the temperature time series data for 10 temperature 

sensors.  

The PBM is used to investigate the dominant parameters influencing the temperature evolution in the 

vicinity of the FE experiment, the results of 32 orthogonal test cases have been analysed systematically. 

Estimated parameters uncertainty ranges of ±10% for thermal conductivities of the GBM (λGBM) and 

bentonite block (λblock) are analysed and bands of temperature uncertainties are compared with 

temperature sensor data, which allows sensor data assessment including identification of the faulty 

sensor data. Such a ML-assisted physical modelling framework can be applied to future repositories.  

A review of ML DDM methods has been performed and eight promising methods were evaluated in the 

prediction of temperature and relative humidity within the experiment. In terms of performance indicators 

MAE, MSE, and Pearson's r coefficient R, the PIML, kNN, and ANN ML models demonstrate good 

accuracy when compared to other ML models. The PIML and kNN models show high computational 

efficiency, the PIML, kNN, and ANN models show robust stabilities and sensitivities in the conducted 

sensitivity analysis in predicting both temperature T and relative humidity RH. The PIML model 

(combined kNN with heat power P boundary condition) performs best for this study. A lesson is that 

comparing different ML algorithms can be difficult owing to the many factors involved in a tool's 

performance. This test case has illustrated the criteria that can be used to qualify a ML method (including 

statistical methods, computational efficiency tests and the independency of the learning data set). 

The general setup of two types of digital twins, one using a PBM, the other using DDM, has been 

realised. These twins allow temperature predictions for any location within the 3D model domain or the 

x, y, z data range of the DDM. Prediction into the future temperature evolution is possible with the PBM-

based digital twin allowing also predictions including assumptions on uncertain model parameters (or 

their evolution) to identify abnormal sensor data or sensor failures. The PBM digital twin has been used 

for parameter uncertainty related to sensor data analysis. In addition, it has been used to identify the 

dominant parameters influencing the temperature in the tunnel near field. The PBM results for ~100 

parameter sets containing variations of eight parameter values (including heater power and thermal 

conductivities) are used to define input and output parameter sets for ML to generate a surrogate model 

for the related input and output parameters. With such a surrogate model, millions of calculations for 

different input parameter and temperature output sets could be generated in a few seconds, allowing 

the quantification of dominant parameter uncertainty and identification of the most dominating 

parameters for temperature evolution in the tunnel near field. The DDM based digital twin could be used 

partly for predictions into the near future temperature development, maybe due to smooth temperature 

evolution for a system like the FE experiment, but results have to be handled carefully because they are 

not founded by related learning data of the corresponding DDM.  

An extension of the temperature (humidity) digital twin for the FE experiment is planned in the direction 

of PBM of hydraulics, mechanics and gas migration looking at the available data from the FE experiment. 

However, one has to take into account that humidity sensor data as well as pressure, gas, stress, strain 

or displacement sensor data are not as smooth as temperature sensor data. Therefore, a combined 

PBM and DDM might be successful when developing a THMC digital twin for the FE experiment.  
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3.4 Test Case Description and Results: UFZ 

Authors: Nico Graebling and Jörg Buchwald (UFZ) 

Editor: Matt White (Galson Sciences) 

 Introduction 

The work undertaken by UFZ within MODATS was multifaceted, and the different contributions are 

divided into three subsections. 

First, in Section 3.4.2, interactive visualisation systems are described. These can be considered as 

digital twins with a focus on visualisation. The applications were developed primarily as desktop virtual 

reality applications and can be used for different purposes: 

• As integrated information systems for domain experts. 

• As a starting point for multi-party-dialogue. 

• As teaching material for university students or interested members of civil society (referred to 

as intermediates). 

This aspect of the work is described in more detail in [57 and 58]. 

Second, in Section 3.4.3, the results of the comparison of simulation and observation data for the 

uncertainty analysis in the scope of the FE experiment are summarised. This covers the preprocessing 

of temperature measurements, a statistical analysis and the visualisation of the results. The work is 

described in more detail in [59]. 

Third, in Section 3.4.4, the ongoing development of a generic tool for the visual comparison of simulation 

results, referred to as OpenGeoSys (OGS) - Visual Comparison of Simulation Results (VisCoSiR) is 

presented. OGS is open-source software for the simulation of THMC processes in porous and fractured 

media. OGS-VisCoSiR is a visual tool for the comparative exploration and analysis of simulation data 

for use alongside OGS. 

 Interactive Visualisation Systems 

UFZ developed two virtual reality applications, which can be considered as digital twins with a focus on 

visualisation, as the applications contain virtual models of the URL and its geological context and 

measurements displayed in this virtual environment update automatically whenever sensors measure 

changes in the real URL. Virtual reality is a computer-generated simulation of a three-dimensional image 

or environment that can be interacted with in a seemingly real or physical way. The first application, the 

Virtual Experiment Information System (VEIS), is an integrated information system for domain experts, 

that includes the geometry of the tunnel system, the geological environment and information associated 

with experiments undertaken in the Mont Terri URL (see sub-section “Data Integration” in Section 3.4.2.1 

for details). In a second step, the VEIS for domain experts was used as a basis for the development of 

a virtual field trip on methods and results in the context of radioactive waste management research at 

Mont Terri. This second application targets intermediates and can be used as a starting point for a multi-

party-dialogue. Both applications share a similar architecture, that is displayed in Figure 3.23. The base 

is a 3D scene, created in the Unity Game Engine. In addition to data that does not change during runtime 

(“static data”, e.g. the tunnel system), information about boreholes and sensors from online databases 

is included in the application. Infrastructure for interactions and data integration comes from a module 

called UFZ Framework. 

3.4.2.1 VEIS – A Digital Twin Prototype 

We created a digital replica of the Mont Terri URL, that integrates heterogeneous data from several 

different sources. It allows data to be accessed and explored within its spatial context without prior 

technical knowledge. Both simulation results and observation data are displayed within the same 

system. In the following subsection, the development process of the application is explained. It is 
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followed by details about the data integration. Afterwards, visualisation of the experiments and the user 

interface is explained. The final subsection provides conclusion on the VEIS work. 

 

Figure 3.23 - Technical infrastructure and data sources that are included in the VEIS. 

Development 

We collaborated closely with domain experts to create a prototype of the VEIS for the Mont Terri URL. 

Highly heterogenous data sets from the URL were collected, converted, preprocessed and curated. The 

formats of the converted data include, for example, the Visualization Toolkit (VTK) format, which is well 

established in the scientific community, and the glTF file format, which provides high flexibility for use in 

3D visualisation [60]. The application was created using the Unity Game Engine. Unity was chosen for 

its versatility, allowing deployment on desktop PCs, stereoscopic virtual reality devices like head-

mounted displays, and in CAVE5-like setups (like the VisLab at the UFZ Leipzig, www.ufz.de/vislab). In 

this way, the application supports a wide range of input devices, from standard desktop controllers to 

specialised virtual reality controllers. Additionally, Unity offers the flexibility to extend functionality 

through additional modules and scripts, and enables the recording of interactive sessions, which can be 

useful for presentations. 

Data Integration 

Figure 3.23 presents an overview of the data sources integrated into the application. This data 

integration will be explained in detail in the following subsection. The model of the Mont Terri URL’s 

tunnel system, originally created via laser scan, serves as a frame of reference for the other data sets 

that are included in the application. It is enhanced by a visualisation of the stratigraphic layers and the 

major tectonic faults (Figure 3.24) representing the URL’s geological context. 

The results of six numerical simulations have been integrated in VEIS. These simulations were 

performed in previous work, using the OGS simulation software [61]. The data sets vary in terms of 

structure (raster, mesh, and time series data), dimensionality (ranging from 1D to 4D), and scale (from 

 

5 A virtual reality CAVE is a virtual reality space; essentially an empty room in the shape of a cube in which each of the surfaces 
(the walls, floor and ceiling) may be used as projection screens to create a highly immersive virtual environment. 

http://www.ufz.de/vislab
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meters to kilometres). Despite the diversity of formats, a consistent processing approach was applied. 

They were first preprocessed and incorporated into a unified geographic context using the OGS Data 

Explorer, other OGS preprocessing tools [62] and ParaView [63], which are open-source tools providing 

interfaces for data integration and conversion, including geographical information system formats and 

geological modelling software platforms such as GOCAD and Petrel. 

 

Figure 3.24 - Screenshot from the interactive visualisation systems for the Mont Terri URL illustrating 
the geological context in form of the stratigraphic layers and major faults. 

Subsequently, a variety of post-processing and visualisation techniques were applied, including 

geometry clipping, surface extraction (e.g., contour surfaces), projections, and colouring (details of this 

methodology can be found in [64, 65]). The data were then exported as geometric objects in the glTF 

file format [60]. Importing these objects into the Unity scene involved the use of custom importer scripts 

(implemented in C#) and a dedicated Unity extension. Additionally, intermediate scripts were created to 

transfer supplementary data from ParaView to Unity. This supplementary data includes labels for the 

stratigraphic layers, colour mapping tables, and individually formatted time labels. 

In addition to these static data, the system provides access to two productive databases, offering real-

time updates on borehole and sensor data. First, data from the Mont Terri Borehole Information System 

(BIS) was integrated. The BIS is based on a productive PostgreSQL database, comprising 19 tables 

that represent various objects, including boreholes and their drilling sections. The borehole table holds 

details such as a unique borehole ID, links to associated documents, and geometric attributes like 3D 

starting and ending points, along with azimuth and dip angles. Furthermore, it provides information about 

drilling sections, such as the diameter and length. 

To incorporate borehole and section data from the BIS into the prototype, PostgreSQL libraries were 

imported into the project and C# scripts were implemented to create a communication layer between 

the Unity application and the borehole database. This layer offers flexible access to live data and allows 

for switching between databases (remote or local) with ease. For the visual representation within the 3D 

scene, only valid boreholes with either both starting and ending points or a combination of the starting 

point, dip and azimuth, and the section length are considered. All boreholes are assumed to be straight. 

Boreholes lacking this geometric information are categorised as invalid. At the time of development, the 

database contained 1,365 boreholes, of which 16 were considered invalid. 

In practical use, the prototype retrieves data as follows: 
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• Upon application launch, it loads the geometric data for all boreholes. 

• This data set is then preprocessed to filter out invalid boreholes. 

• Finally, meta data, such as document links and section information, is linked to the data objects 

associated with the borehole. 

Internally, Unity uses single-precision floating-point vectors for positioning and orienting 3D objects (i.e., 

32 bits are used for storing a single floating-point number). However, the BIS stores start and end points 

with double-precision (i.e., 64 bits per floating-point number). When displaying small boreholes in a large 

environment, this precision reduction can lead to significant artefacts. This issue has been mitigated by 

using an extension for double-precision floating-point vectors, at least for all calculations before 

displaying the visual representations of boreholes. 

In addition to the borehole data, sensors and their measurements are included into the application. 

Therefore, access to a Firebird database for observation data of the URL in general and the PostgreSQL 

database specific for the FE experiment has been implemented. In this way, sensor measurements of 

various parameters, including pressure, temperature, displacement, and humidity are available in the 

application. Similar to the approach with borehole data, we implemented C# scripts to establish an 

additional communication layer between the Unity application and the sensor databases, ensuring 

maximum flexibility.  

Several preprocessing methods for the sensor data were implemented, including aggregation (e.g., 

averaging measurements per day), and creating a version of the time-series without outliers. To identify 

outliers, the maximum realistic difference between consecutive measurements was determined in 

consultation with domain experts for each sensor type. Any aggregated measurements deviating more 

than this maximum delta from the previous aggregated measurement were considered outliers. For 

example, for temperature data, for which the database stores multiple values per hour, this threshold is 

set to 2°C per day. The outlier removal, including the criterion, is displayed in the chart view for 

transparency reasons (Figure 3.25). 

 

Figure 3.25 - Screenshot from the interactive visualisation systems for the Mont Terri URL illustrating 

sensor measurements from the online databases, depicted with outlier removal. 

For the borehole data as well as for sensor measurements, the prototype also provides functionality to 

save a combined local backup copy of the data retrieved from the databases once the online databases 

have been accessed. This creates the possibility to use the application also in situations in which the 



EURAD Deliverable 17.6 – Advancements in Monitoring Data Management, Modelling and Visualisation 

EURAD - Monitoring Equipment and Data Treatment for Safe Repository Operation and Staged 
Closure, Deliverable 17.6 
Dissemination level: Public 
Date of issue of this report: 07/05/2024  Page 54  

database is not accessible or the user’s internet connection is not stable. The backup is an encapsulated 

combination of the following data sets: borehole positions and dimensions, links to borehole-related 

documents, sensor positions and sensor measurements. It can be considered a local file and must not 

be confused with a local database. From a technical perspective the data dump is a text file in the 

JavaScript Object Notation (JSON) file format containing all data objects in a structured way. 

Visualisation-Based Digital Twins of Experiments 

The VEIS contains not only data sets for the whole URL but also detailed information and visualisation 

for selected experiments. In the following, the incorporation of information and visualisations for the FE 

experiment is described. In addition to measurement data, the effect of heating has been modelled in a 

heat transport simulation with a time span of roughly 15 years using OGS. It contains 230 time steps 

and covers a volume of 100 x 80 x 100 m3 around the tunnel. The modelled area consists of 164,472 

hexahedra and 169,806 points. The VEIS displays these simulation results as a clipped volume (Figure 

3.26). 

 

Figure 3.26 - Screenshot from the interactive visualisation systems for the Mont Terri URL illustrating 
temperature simulation results from the FE Experiment as a clipped volume. 

The diverging colour map for temperature values allows to perceive high temperatures close to the 

heaters (white to red) as well as lower temperatures in the Opalinus Clay (blue to white). As structures 

in the blue-to-white area of the colour map were hard to perceive, the colour map has been sampled in 

discrete bins of 3°C. Although this approach reduces the displayed degree of detail, it allows to inspect 

the overall more important spatial structure of the heat emission and expansion. 

The heat induced by the heaters affects not only the temperature but also other characteristics of the 

rock. Therefore, another model simulates mechanical parameters such as displacement, stress, and 

strain of the surrounding Opalinus Clay. This simulation and the underlying model have the same 

characteristics, such as domain extent and time span, as the temperature simulation mentioned above. 

In the application, the results of the vertical stress simulation are displayed as six contour surfaces of 

increasing values. A sequential colour map has been used for the surface colouring here because it 

allows to intuitively analyse spatial trends and interrelationships. 

For both, the temperature as well as the vertical stress simulation, users can individually select a time 

step or play the simulation visualisations as an animation. Beyond these detailed data sets for the FE 

experiment, various data sets of the Cyclic Deformation Experiment and the Fault Slip Experiment have 

also been included in the VEIS. This covers geological context data sets, simulation results and 
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illustrations. In addition, we collected basic information for a selection of 63 experiments. The 

experiments’ short names, short descriptions and positions in 3D space attached or close to the tunnel 

system have been extracted from [66] and the website of the Mont Terri Project. Based on these data, 

users can inspect the boreholes associated with an experiment by selecting an experiment’s 3D marker 

in the scene (Figure 3.27). 

 

Figure 3.27 - Screenshot from the interactive visualisation systems for the Mont Terri URL illustrating 

experiment markers and the selection of the FE experiment’s boreholes. 

User Interface 

All functionalities of the VEIS are reflected in the Main Menu. There, users can change the visibility of 

data sets, control animations of time-dependent data, select data sources and set up the visualisations 

in a custom way. In addition to the custom setup of the current view on the data via the Main Menu, 

users can visit viewpoints for which the object visibilities and interaction patterns are predefined. 

Furthermore, the application provides a Borehole Menu, which opens when users select the visual 

representation of a borehole in the scene. It provides basic borehole information, drilling sections details, 

a list of the installed sensors and access to the sensors’ measurements in form of charts (Figure 3.24D). 

Conclusion 

By consolidating all data within a common spatial context, our application promotes effortless exploration 

of static and live updating data from the URL. The implemented system lowers the cognitive effort usually 

needed to gain insights from measurements, simulation results and contextual data. Moreover, the 

interactive visualisations significantly reduce the technical hurdles typically associated with such 

systems. As the system automatically updates when the underlying data sources (like boreholes and 

measurements) change, it can be considered as a digital twin prototype with a focus on data 

visualisation. The 4D visualisation approach is transferable to operating repositories. 

3.4.2.2 Virtual Field Trip 

We adapted the VEIS to be applicable as a virtual field trip for intermediates, defined as university 

students or interested members of civil society. To facilitate this, several additional features were added 

to the VEIS. 

First, the illustrations of the experiments were extended. Their objectives and methods are less intuitive 

for intermediates than for experts. Therefore, illustrations were added with more contextual information 
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to introduce the users to the general idea and setup of the experiments in a more descriptive and vivid 

way. An example for such an illustration is the introduction to the FE experiment. The contextual 

information that was added covers the purpose of the heaters, their power output, and positioning within 

the experiment. This information helps intermediates to understand the simulation results and how they 

have been interpreted. 

Second, tasks were added to six of the tour’s viewpoints. A viewpoint consists of a predefined 

perspective (i.e., position and orientation of the virtual camera), an audio or text comment, the visibilities 

of data sets, and possible interactions. The tasks were designed as adjectives based on the learning 

objectives defined in Anderson and Krathwohl’s taxonomy [67]. Users are motivated to “remember” facts 

about URLs, supported in “understanding” the significance of URLs’ geological context, asked to “apply” 

context knowledge from the presentation, enabled to “analyse” results of numerical simulations, and 

invited to “evaluate” the effects of radioactive waste disposal on the host rocks. For example, one task 

is the exploration of the tunnel system’s position and orientation relative to the surrounding stratigraphic 

layers. This motivates the users to visually combine information from two different spatial data sets to 

actively “understand” the geological structure and the types of rocks surrounding the tunnel system. 

Another task is to explore numerical simulation results of a determined in situ experiment that are 

available in the tour. In this case, users are asked to identify the time step when a simulated quantity 

reaches its maximum. In this way they are encouraged to not only passively view the processes but to 

“analyse” the data to obtain a better understanding. The solution to all tasks is included in the prototype 

and can be accessed on demand by clicking a button.  

Third, the application’s graphical user interface (GUI) was improved by adding controls for the playback 

of audio comments, the display of text comments, and access to the tasks and their solutions. This 

supports participants in attending the tour at their own pace as all content can be accessed repeatedly 

and audio comments can be paused if necessary. 

Fourth, digital assessments were set up so that learning outcomes can be tested while the users attend 

the tour. These tests are designed as inline tests, i.e., they follow the corresponding block of viewpoints 

immediately. The test infrastructure is implemented in a dynamic way, which means that tests are not 

hard-coded parts of the application but can be provided as structured information in JSON file format, 

which are then read by the application in runtime. This allows teaching experts or science 

communicators to define their own tests based on the context of usage without changing the application 

itself. 

Evaluation Procedure and Participants 

In advance of the actual evaluation, a heuristic evaluation was conducted to identify and resolve major 

issues with use of the first prototype. An expert for user experience design analysed the prototype and 

categorised their findings based on Nielsen’s heuristics [68]. In ten categories of usability matters, issues 

were assigned a severity rating from 1 (lowest severity) to 4 (highest severity). We resolved all issues 

with a severity of 2 or higher in a second version of the virtual tour prototype and discussed the 

adjustments with the user experience design expert again. 

The virtual tour was then evaluated concerning its usability and learning outcomes at two different 

courses at master level at two universities: in “Numerical Methods in Geotechnical Engineering” at the 

TU Bergakademie Freiberg and in “Ground Water” at TU Dresden. Overall, 22 participants took part in 

the evaluation, 13 in Dresden and nine in Freiberg. Fourteen of the participants identified as male and 

8 as female. At both universities, four female participants attended. The age of the participants was in 

the range from 21 to 32 years with a median of 24.5 years. The average age in Dresden was 

approximately 27 years while the participants in Freiberg were much younger with an average of 22 

years. One participant stated that they have a red-green deficiency. None of the participants had detailed 

prior knowledge on the Mont Terri URL. 14 participants chose to attend the English version and 8 chose 

the German version. Attending the virtual field trip as well as the evaluation was voluntary. The 

participants were informed before the event that their data would be processed in anonymised form and 
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that they could request the deletion of their data at any time. The results of the knowledge tests were 

not considered for their course marks. 

Evaluation of Usability 

The perceived usability was measured using UMUX-LITE [69], which is a reduced version of the usability 

metric for user experience (UMUX). The questionnaire contains two items, that are answered on a 

seven-point-Likert scale. Its shortness is helpful to avoid overstressing the participants with too many 

questions. [70] showed that UMUX-LITE scores can be used to calculate an approximated score for the 

system usability scale (SUS) [71] as “the correlation between the SUS and UMUX-LITE [is] significant 

and substantial”. Because SUS is an established questionnaire, it has been extensively analysed. Its 

scores range from 0 (worst) to 100 (best) and can be categorised into more intuitive categories from 

D (worst) to A+ (best) or using the attributes “okay”, “good”, “excellent”, and “best imaginable” [72]. The 

evaluation proved the application’s good perceived usability, as the median SUS score is 74.36. This 

value corresponds to the mark “B” and the attribute “good”. 

Evaluation of the Learning Outcomes 

The learning outcomes were measured with multiple-choice tests, in which exactly one of the three 

possible answers is correct. There was no time limit for completing the tests and it was possible to not 

answer a question if a participant was not sure of the correct answer. For reasons of feasibility, the 

variety of question types was limited. This limitation could be addressed in future work. The learning 

outcomes were measured in four tests; one on the URL and three for the experiments shown in detail 

(e.g., FE experiment). These tests are designed as inline tests, i.e., they follow the corresponding block 

of viewpoints immediately. Before each test the participants are informed that there is no time limit for 

the test and that they have the possibility to go back to the viewpoints if they need more time for 

exploration. Because the contents of these inline tests are very specific, no prior knowledge was 

assumed. 

Figure 3.28 shows a box plot of the virtual tour’s perceived usability and the corresponding attributes 

and grades. One participant failed the test because they answered only 27.27% of the questions 

correctly. This person is considered an outlier as their result is significantly worse than the box plot’s 

lower fence (approx. 45%). The median score of 86.36% correct answers shows that the group of 

participants reaches good results in the knowledge test and demonstrates the virtual tour’s ability to 

successfully teach relevant knowledge about the Mont Terri URL in the context of radioactive waste 

management research. 

Conclusion 

By extending the VEIS of the Mont Terri URL, an advanced virtual field trip for educational contexts and 

as a base for multi-party dialogues was created. A strength of the work is the interactive visualisation of 

actual research data and its context, allowing intermediates to explore the data individually in an active 

learning process supported by the application’s didactic design. The evaluation indicates a good 

perceived usability of the virtual tour prototype even for participants with low prior knowledge and little 

experience with 3D applications. Furthermore, the evaluation gives evidence of a significant knowledge 

transfer provided by the virtual field trip. A use for science communication to other stakeholders within 

participative processes for transparent monitoring concepts and site selection processes is conceivable 

and could be a potential base for contributions in EURAD 2. 
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Figure 3.28 - Results of the virtual field trip evaluation concerning the perceived usability (left) and the 

knowledge transfer (right). The distributions in both charts are common concerning the absence of 

prior training with the system (usability) and also reflect usual exam results in university education. 
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 Comparison of Simulation and Observation Data 

3.4.3.1 Data Acquisition from the FEIS Database and Preprocessing 

In order to make monitoring data available for visualisation, we implemented a Python script, that 

accesses the FEIS database and retrieves temperature measurements for a given list of sensors and 

dates. These data are then aggregated on a daily base and converted to the VTK file format. In this way, 

we provide preprocessing infrastructure for making observation data compatible with OGS tools (see 

Section 3.4.4) and other scientific visualisation software such as ParaView. Furthermore, the use of a 

common and widely applied data format, such as VTK, improves the robustness of current and future 

software developments compared to establishing a new and specialised file format used only in the 

domain. This is because established formats are founded on the technical support of a large number of 

users and are less likely to be replaced by new formats. The Python script is available under the license 

GNU GPLv3, and can be accessed online [73]. 

3.4.3.2 Uncertainty Analysis and Comparison 

For the purpose of uncertainty quantification in the context of clay parameter uncertainties at the Mont 

Terri site in Switzerland, an experimental design-based history-matching workflow was applied to the 

data of the FE-experiment. The approach had previously been proposed to study uncertainties in 

coupled modelling of THM processes [74]. The approach discussed [74] is especially suitable for the 

given problem class, where experimental data can be compared directly to experiments, owing to 

several aspects discussed in the publication. To highlight here three of them: 

• It is very general, i.e., it does not impose specific requirements on the model. 

• It combines experimental and modelling responses, allowing also for the validation/study of 

model uncertainties beside parameter uncertainties. 

• A proxy model is used to accelerate direct sampling/global sensitivity analysis, making it feasible 

to study complex three-dimensional problem. 

A schematic sketch of the workflow is depicted in Figure 3.29. 

Figure 3.29 - Schematic sketch of the workflow. 

The workflow starts with a parameter identification step, in which parameters with their corresponding 

suggested ranges are selected for the study. Detailed knowledge about parameter distributions is 

advantageous, as it increases the performance of the workflow. In a second step, the objective function 

is defined. In our case, it is a history-match error defined by the integrated squared difference between 

the model and the experiment responses. After that, an initial parameter screening is performed to limit 

the number of parameters considered in the following steps. All parameters with a significant contribution 

to the model output are used in a subsequent step to build the proxy model, which is in our case a 

Gaussian Process regression model. The proxy model is then used to perform a direct Monte Carlo 

sampling of parameter combinations and/or a global sensitivity analysis. 
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Based on estimation for model and proxy errors (and experimental errors), a history-match filtering is 

conducted accounting only for parameter combinations for which its responses are in agreement with 

the given thresholds. The matched runs can then be used for forward and predictions runs of the full 

forward model, for parameter estimation or an analysis of failure probabilities of defined safety functions. 

Observations are made at six distinct points within the Opalinus clay, each at varying distances from the 

tunnel wall. The history-match error metrics, based on the proxy error, experimental error, and model 

error, guide the selection of subsamples compatible with the experimental data. Model errors are 

estimated and thresholds are set for history matching. The model’s history-matching capabilities are 

evaluated by comparing experimental and simulation results for temperature and pressure responses. 

As deterministic forward model, we replaced the fully THM-coupled two-phase flow model with a non-

isothermal Richard’s approximation-based model. The model solves the equations for temperature and 

pressure as primary variables and contains scalar expressions accounting for the mechanical response 

in the mass balance (further details can be found in [75]) as well, which is why it is expected that 

temperature and pressure values to be close to the Richard’s-based thermo-hydro-mechanical coupled 

model. This procedure reduced the number of six primary variables to two, i.e., temperature and pore 

pressure, with only limited loss in accuracy. While the temperature response exhibits good agreement 

in the matching procedure, the pressure response shows discrepancies, possibly due to oversimplified 

models or inaccuracies in material properties. This can be seen from the responses depicted in Figure 

3.30. The modelling curves were generated from parameter sets taken from a folded Placket-Burman 

screening plan6. The colours indicate the history-match error from smallest (blue) to largest (red). 

Parameter sets that minimise the history-match error of the temperature significantly over- or 

underestimate (depending on the observation point) the corresponding pressure response. 

 

 

Figure 3.30 - Temperature and pressure responses for one observation point. Black: experimental 

response. Blue-to-red: Colour coded modelling responses of a folded Placket-Burman screening plan. 

Blue corresponds to the smallest history-match error, whereas red stands for the largest history-match 

error. The data is given for one observation point in clay. 

Parameter estimation is carried out based on history-matching results and proxy error thresholds. The 

uncertainty in parameter distributions reveals unique behaviours for certain parameters, particularly 

regarding parameters that have the greatest impact on model results (e.g., hydraulic and thermal 

conductivity). Full forward model runs using these parameters highlight differences in pressure 

responses for different observation points, indicating model inadequacies. Point-based analyses show 

 

6 A folded Placket-Burman screening plan is an approach to investigating the dependence of a measured quantity on several 
independent variables (factors), to minimise the variance of the estimate of the measured quantity. Folding is a technique to 
double the size of plan for a given number of factors. 
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that parameter preferences vary across observation points, particularly for parameters like porosity and 

shear modulus. These findings suggest inconsistencies in the model description, potentially related to 

the representation of bentonite and shotcrete as discrepancies were most pronounced near the tunnel. 

It is important to note that only clay parameters were treated as uncertain in this study.  

In summary, this study contributes to addressing the complex challenges of uncertainty assessment in 

THM processes for high-level radioactive waste repositories. While certain aspects, like geometrical and 

process-related uncertainties, are overlooked, this work serves as a foundation for further research and 

model improvement. We believe that most of the identified discrepancies can be resolved by taking into 

account uncertainties in the parametrisation of the bentonite and shotcrete material domains. 

 OGS VisCoSiR 

As well as developing tools for processing monitoring data for visualisation purposes, the initial 

development of a visual tool for the comparative exploration and analysis of simulation data for use 

alongside OGS was undertaken. Before the development, we interviewed domain experts to gather 

information about the tasks needed to compare simulation results, their current workflow, and the 

visualisation methods used. Then, we planned the application based on the results of these interviews. 

The two use cases for the application are the comparison of results from parameter studies and the 

comparison of simulation results from different simulation software. The tool consists of two parts: 

• A combiner, that allows to spatially and temporally combine (i.e., interpolate) the data sets and 

calculate metrics (like deviation). 

• An analyser that presents the combination result and allows domain experts to explore the 

differences and similarities in an interactive, visual way. 

The results of the combiner are stored in the VTK file format and then loaded into the analyser tool. The 

separation of the combination and the analysis into two different tools provides flexibility (other tools can 

be used e.g., for the analysis as well) and efficiency (the combination is only calculated once). 

An advantage of a visual tool, compared to applications without a GUI (like Python scripts) or with a 

complex GUI (like ParaView) is the intuitive preparation and exploration of the data. A screenshot from 

the analyser tool is shown in Figure 3.31. To avoid overburdening the user, the analyser tool uses 

visualisation techniques familiar to domain experts (based on the interviews described above). The 

application provides functionality to visually explore the spatial and temporal data set created by the 

combiner tool. It supports the user with data summaries and filtering tools for details on demand. The 

analyser covers, for example, the creation of contour surfaces, the clipping of the data set and the 

sampling of the data sets at points. The software architecture is designed to be extendible and flexible 

to allow enhancements of the tool, e.g., by adding other data sources like observation data. In this way, 

we provide technical infrastructure for a visual in-depth data comparison to enable domain experts to 

reduce uncertainties by validating simulation results in general. 
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Figure 3.31 - Screenshot from the combiner tool: Users can specify the timesteps used for the 

combination (grey) based on the two input data sets (blue and pink). 

 

 Conclusion 

In the context of exploring and validating simulation data, we provided three contributions: 1) 

preprocessing software infrastructure to convert measurement data into a common data format for 

visualization, 2) the actual comparison of simulation and observation data for the FE test case, and 3) a 

generic tool for the visual exploration of simulation results. With these contributions, we not only provided 

findings for the specific experiment but also generic infrastructure that supports researchers in exploring 

and validating simulation results. 
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4. POPLU and Prototype Repository (Posiva, SKB and VTT) 

Authors: Arto Laikari, Pirkko Kuusela, Anu Purhonen and Tommi Aihkisalo (VTT) 

Editor: Matt White (Galson Sciences) 

4.1 Description of the Reference Experiments 

 POPLU Experiment (Posiva) 

The POPLU experiment was implemented at the planned disposal depth of over 400 m in the ONKALO 

URL, which is located in Olkiluoto/Eurajoki, Finland, during the EC DOPAS project [76]. The objective 

of the experiment was to test the wedge-shaped design for a deposition tunnel plug. The plug was 

constructed using steel-reinforced low-pH concrete. A modified tunnel backfill with bentonite was located 

behind the plug. The dimensions of the plug are approximately 6 m (long) by 5.5 m in diameter. The 

layout of the experiment is shown in Figure 4.1. The experiment was constructed in 2015 and 

pressurised in 2016. The plug and part of the backfill are equipped with more than 100 sensors. These 

sensors include: 

• Vibrating wire-based total pressure sensors with temperature measurement. 

• Vibrating wire-based pore pressure sensors with temperature measurement. 

• Strain gages. 

• Thermocouples for temperature measurement. 

• Two types of relative humidity sensors with temperature measurement. 

• Displacement sensors. 

The POPLU experiment also included a small-scale wireless sensor feasibility sub-experiment, where 

the main purpose was to test the feasibility of using radio waves to transmit sensor data through the 

rock. Data from this sub-experiment were not used in MODATS.  

 

Figure 4.1 – The POPLU experiment layout and photograph. 

 

Monitoring information was collected from the neighbouring tunnel and transferred to the ground level, 

where further management of the acquired data sets was performed. Monitoring of the plug commenced 

during the construction phase. After construction, the plug was pressurised by pumping water behind it 

from the neighbour tunnel.  

In addition to the POPLU experiment data sets, Posiva also provided data from monitoring of the 

geosphere for use in MODATS. These data include: 

• Extensometer data sets (temperature, displacement, relative humidity). 

• Rock data sets (pressure). 
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All the data were provided in raw text format (e.g., comma-separated value (CSV) format) directly from 

the dataloggers. An outline of the data acquisition system is presented in Figure 4.2. In this data 

acquisition system, various datalogger units with multiple sensors are connected to the local area 

measurement network (LAN). Data is initially stored locally in network-attached storage (NAS) hardware. 

An industrial PC acts as a gateway to another network, which allows the data to be transferred to 

additional hardware placed at the ground level.  

Erreur ! Source du renvoi introuvable.

 

Figure 4.2 - POPLU data acquisition setup. 

 

 The Prototype Repository Experiment (SKB) 

The Prototype Repository experiment was implemented in the Äspö URL, in Sweden [77]. The large-

scale field test includes characterisation of the hydraulic regime in the rock, instrumentation of rock and 

engineered barriers, design and construction of engineered barriers, and modelling of the performance 

of these barriers, primarily buffer, backfill and plugs. In the experiment, six full-scale copper-shielded 

iron canisters with electrical heaters were placed in bentonite buffer. The tunnel was backfilled, and a 

plug separates the inner section - Section I - from the outer section - Section II. A second plug separates 

the Prototype Repository from the rest of the Äspö URL. All cables are routed via lead-throughs to the 

neighbouring tunnel. The Prototype Repository was constructed between 2001 and 2003. The outer part 

was dismantled in 2011 and inner part was dismantled in 2023. The Prototype Repository layout is 

presented in Figure 4.3 and Figure 4.4. The experiment was equipped with more than 350 sensors. 

These sensors include: 

• Vibrating wire-based total pressure sensors with temperature measurement. 

• Vibrating wire-based pore pressure sensors with temperature measurement. 

• Strain gages. 

• Thermocouples for temperature measurement. 

• Two types of relative humidity sensors with temperature measurement. 

• Displacement sensors. 

• Water flow sensors. 
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Figure 4.3 – The Prototype Repository experiment and removal of the outer plug (right side image). 

 

 

Figure 4.4 - The Prototype Repository experiment location and layout. 

SKB provided the following data sets for use in MODATS: 
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• Experimental location/layout. 

• Sensor coordinates. 

• Sensor data from backfill and deposition holes. 

• Sensor data from rock boreholes. 

• Sensor data from canisters. 

• Plug 1 and 2 leakage data. 

• Key activities in the experiment. 

These data sets were provided in manually preprocessed Excel-format or Word-/RTF-files. In the 

analysing phase of the received data sets, mind maps from the data were created. 

4.2 Test Case Objectives and Approach 

The objective of the POPLU and Prototype Repository test case was to create modular tools to support 

data use and management work especially in the data processing phase. These tools are expected to 

be useful to domain experts, for example, by accelerating their work and by offering new methods to 

analyse data. 

The work was undertaken by VTT, a TSO without direct access to the WMO databases. As such, the 

work was undertaken with selected data sets chosen by the WMOs and taken from the real data 

environments.  

 Approach 

As a starting point, representatives from Posiva and SKB supplied data sets from the POPLU and 

Prototype Repository experiments described in Section 4.1. These stationary data sets were reviewed 

and data management approaches considered. The data sets were from different stages of the data 

management lifecycle, so they required different handling procedures.  

To get deeper understanding and guide the work, various experts from Posiva and SKB were 

interviewed to identify common data management procedures, and expectations concerning the test 

case from the perspective of the WMOs.  

To support the work, literature reviews were performed to find applicable standards and data 

conventions from the radwaste and nuclear domain, especially concerning the metadata definitions of 

the data.  

Various methods and libraries for processing and visualisation of the data sets were tested. This testing 

resulted in selection of Python libraries and Jupyter Notebooks for the work in MODATS (see discussion 

of these tools in Section 4.3.1, as they are open-source products and widely used in the data processing 

domain. 

4.3 Data Treatment and Management 

 Preliminary Studies 

A general dataflow framework from data acquisition to decision support is illustrated in Figure 4.5. This 

figure also shows the stage that the data sets provided by Posiva and SKB had reached in the data flow 

chain. Data from the POPLU experiment were raw data provided from various measurement devices; 

they were provided in multiple file formats. Data from the Prototype Repository experiment had been 

manually preprocessed; they were provided as daily averages of the sensor values, mainly in Excel-

format.  

Initial work on the case study focused on gathering background information on three fronts: 

• Interviews with Posiva and SKB personnel were undertaken to learn about the current approach 

to data treatment and management within each organisation. The interviews considered data 

similar to the POPLU and Prototype Repository data sets. 
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• Analysis of the POPLU and Prototype Repository data sets. 

• A review of approaches to data management in nuclear waste repositories to develop 

recommendations and identify good practice.  

The aim of the interviews with Posiva and SKB staff was to identify current data management tools and 

current workflows, as well as challenges to, and opportunities presented by, use of the sensor data. The 

interviews were held with research coordinators/leaders, domain experts, data quality experts, 

information technology experts, and research data management experts. Tool demonstrations by the 

data user provided clear and detailed understanding of the current workflows used by the WMOs. The 

main finding from the interviews was that tools for processing this kind of data were rather limited (in 

both the scope of the tools and the number of tools available). Nor did the interviewed persons refer or 

compare to any more advanced data operations environment for some other data source. 

The main tool used for data processing is plotting sensor measurements as a function of time. Plotting 

different types of sensors (e.g., temperature and pressure) on the same graph can lead to a loss of 

detail owing to the different ranges of sensor values. 

In a typical workflow, monitoring data from various sensors is taken to Excel for processing and to 

produce suitable plots for reports. Excel was also the main tool for checking data quality and cleaning. 

This relates to the fact that both experiments have been established and started a long time ago and at 

that time modern data processing tools were not available.  

 

 

Figure 4.5 – General high-level data management framework, with the data flow stage of received 

Posiva and SKB data sets in MODATS indicated. 

Posiva and SKB have implemented their own data management frameworks. Information on these 

systems is proprietary and company confidential, and was therefore not available for MODATS. Large 

number of experiments have been conducted over a long period and they have been implemented by 

various actors, resulting in company-specific and partly also experiment-specific metadata and data 
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treatment solutions. However, data sharing wishes and needs are growing, which has resulted in an 

increased need for data interoperability and harmonised information exchange.  

Based on the interviews and the review of the data sets, it was concluded that practical tools for data 

treatment and management would provide better transparency and traceability than Excel. New practical 

tools could also facilitate documentation of the treatment and management activities, and should not 

require users to have skills in programming. Excel offers poor support for documenting data operations 

and finding an alternative tool supporting documentation and templates could improve workflows and 

knowledge transfer.  

In this context, a tool means an algorithm that is implemented as in Python programming language. 

Python is a high-level, general-purpose programming language and it is a popular tool in data science 

owing to the wide availability of high-quality algorithms for data treatment and management. Many data 

environments support Python in data processing and these are usually invisible for the end user. In a 

research context, an interactive intuitive environment for using the tools is preferred. However, as data 

processing algorithms are controlled by user defined parameters, these algorithms require examples 

and guidelines on how to best use them. 

It is proposed that WMOs begin to develop data processing tools in a Jupyter Notebook computing 

environment. Jupyter Notebooks is an open-source web application that allows a user to create and 

share documents that contain live code, equations, visualisations, and narrative text. Narrative text can 

be used to provide instructions for use of the live code, or to write conclusions of results obtained by 

applying code to data. A Jupyter notebook has two components: a front-end web page and a back-end 

kernel. The front-end web page allows data scientists to enter programming code or text in rectangular 

"cells." The browser then passes the code to the back-end kernel which runs the code and returns the 

results. 

Preferred workflows can be promoted by developing notebook templates for users to adapt. Such 

notebooks may produce modified data sets, e.g., data cleaned for further purposes, together with a 

report on how the data have been manipulated. This improves transparency and traceability of data 

operations. Results, for example processed data or figures, can be stored in files, and the evaluated 

notebook can be converted to new formats (e.g., pdf and Word) in order to take results into reports, 

other documentation or storage. Jupyter, as such, is a simple notebook environment used in higher 

education and there are plenty of free beginner level courses on its use. The use of Jupyter is not limited 

to beginners; experienced data scientists also use notebooks owing to its ability to document data 

operations. 

 Metadata, Taxonomy, RepMet Initiative and Standards 

As a part of the preliminary studies a literature review of the literature on data standards, 

recommendations, knowledge models (ontologies), and taxonomies was undertaken. The purpose was 

to identify and apply good practice in data processing during the POPLU and Prototype Repository test 

cases. In particular, the review looked for vocabularies for data anomalies, recommendations for 

labelling observed anomalies, and standards for such labelled data, etc. 

The review identified the potential use of the outcomes from the Organisation for Economic Co-operation 

and Development (OECD) Nuclear Energy Agency (NEA) Radioactive Waste Repository Metadata 

Management (RepMet). RepMet included participation from Andra, Nagra, Posiva and SKB have been 

participating in this initiative together with other WMOs. The main aim of the RepMet initiative was [78]: 

“To formulate a consistent set of guiding principles for capturing and generating metadata. This 

is to enable national programmes to create sets of metadata that can be used to manage their 

repository data, information and records in a way that is both harmonised internationally and 

suitable for long-term management and utilisation in safety cases and elsewhere” 

The RepMet initiative produced the following deliverables: 
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• RepMet/01 – Metadata in Radioactive Waste Management [78] provides an overview of 

metadata and its application within repository programmes, discusses issues around the 

implementation of metadata, and outlines the outputs of RepMet and how they may be used. It 

also provides specific recommendations concerning metadata for WMOs. 

• RepMet/02 – Site Characterisation Library [79] deals with data and related metadata that should 

be considered during the site investigation, leading up to site selection. 

• RepMet/03 – Waste Package Library [80] deals with data and related metadata that should be 

considered for packaged waste and spent nuclear fuel that, after proper treatment and 

conditioning processes, are ready for final disposal at the repository. 

• RepMet/04 – Repository Library [11] deals with data and related metadata relating to the 

engineered structures and waste acceptance requirements of radioactive waste repositories. 

• RepMet/05 – RepMet Tools and Guidelines [81] supports the libraries, providing several tools, 

methods, guidelines and approaches that were either used in developing the libraries or will be 

useful for WMOs when adopting and implementing the libraries. 

However, the guidelines and recommendations for data available from RepMet are high-level, and not 

focused on practical processing of a given data. Because specification of taxonomies, metadata and 

data formats is the responsibility of the data owner, which in this case is the WMO, the work in the 

POPLU and Prototype Repository test case was more focused towards developing tools for detecting 

anomalies, trends, spikes, and other events in the data. The RepMet initiative is highlighted here to 

encourage WMOs to consider applying the RepMet guidelines in their own data environments, which 

would increase data interoperability and common practices. 

 Raw data cleaning process 

The data cleaning framework is illustrated in Figure 4.6. First, there needs to be a collection of device 

specific tools to convert non-homogeneous raw data sources into a format unified data. This is the 

starting point in using the data. Using a transparent and flexible data cleaning pipeline similar to the 

workflow shown in Figure 4.7, it is possible to generate datasets that are suitable for solving specific 

problems. It is important to recognise that different problems require different approaches in the data 

cleaning. For example, for some purposes data need to be cleaned of anomalies (i.e., the anomalous 

data removed), whilst in other cases anomalies need to be found and highlighted from the datasets. 

 

 

Figure 4.6 The framework of using sensor data.  
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Figure 4.7 Conceptual data cleaning pipeline for daily processing.  
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4.3.3.1 Preprocessing 

From the technical point of view, raw sensor data requires processing before it can be used. The first 

step in this processing is to reformat the data from different sensors into a common format and to unify 

the data. The goal is to maintain all of the original information and prepare the data for further processing.  

As noted above, the data provided from the POPLU experiment was in a raw data format. It had the 

following characteristics: 

• It was constructed from hundreds of files, the format of which was dependent on the data source. 

• The data included duplicate values for the same datapoint. 

• Data files could include values from multiple types of sensors. 

• Different units were used for parameter values from the same type of sensor. 

• The data included gaps and anomalies such as spikes or other deviations from expected values. 

Anomalies can be caused by known incidents such as electrical disturbances or they can be 

phenomena that need further study. 

To be able to use the Python tools for processing the data were formatted and combined into one file 

per data source. A CSV file format was used for the combined file. Timestamps were converted to Epoch 

time7 and duplicate rows were removed. For traceability purposes, the original source file of each row 

was identified in an additional data column.  

As noted above, the data provided from the Prototype Repository experiment were already 

preprocessed and were provided in Excel-format. Such data can be processed using pandas (a Python 

Data Analysis Library) if the data are stored in CSV format. Because the preprocessing of the Prototype 

Repository was already done manually by SKB, data files preprocessing mainly involved modification of 

the timestamp column, i.e., the name and format of it, and after that the data can be fed into other tools 

for further analysis and processing. 

4.3.3.2 Cleaning 

Whereas the goal of data preprocessing is unification of the data, the goal of cleaning is twofold. First, 

the goal is to prepare the data for the specific analysis that is going to be performed. Second, the 

cleaning should give an overview of the quality of the data set. Consequently, there is not just one 

cleaning pipeline, but the cleaning tasks should be configured based on the needs of the user. Figure 

4.7 presents an outline of the modular data cleaning pipeline developed for cleaning a daily batch of 

data. Similarly, a larger set of history data can be cleaned for example, to be used as training data for 

specific analysis models. 

A cleaning pipeline may contain basic or more advanced operations. For example, typically the 

algorithms provided by the open-source Python libraries do not process data with gaps successfully, so 

the basic cleaning contains interpolation of short gaps in addition to selection of the measurements that 

are to be analysed from the data files. If the source data that are used have varying sampling rates, then 

resampling of data is needed. However, however the data is cleaned, the process used should be 

transparent i.e., the data points that have been modified have to be traceable to be distinguished from 

the non-modified data. 

A modular data cleaning pipeline is proposed to provide a flexible approach, depending on the end user 

needs, for example: 

• Cleaning pipeline: 

o Data report and cleaned data. 

• Example use cases: 

 

7 Epoch time traditionally corresponds to 0 hours, 0 minutes, and 0 seconds (00:00:00) Coordinated Universal Time (UTC) on a 
specific date, which varies on different computer systems. The date and time in a computer are determined according to the 
number of seconds or clock ticks that have elapsed since the defined epoch for that computer or platform. 
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o Visualisations (remove spikes). 

o Checking/labelling data (all anomalies important). 

o Study sensor problems (spikes important). 

Some of the developed tools may be both the goal of the analysis and intervening step for cleaning data 

for further analysis (e.g., identify spikes for visualisation or identify spikes before removing them). 

In addition to basic cleaning functionalities, the main tools that are related to identification of anomalies 

and quality of data set include:  

• Trend detection and removal (especially required before outlier detection). 

• Outlier detection of single timeseries, outlier detection of groups of timeseries. 

• Detecting spikes in timeseries (time range, height); removing spikes from timeseries. 

Anomaly detection in general requires expert knowledge to what is considered as an anomaly. Spike 

detection, especially, requires identification of what kind of spikes are looked for. Depending on scale, 

something that seems like a spike in a yearly plot may be actually a change of values that lasts for 

several days, On the other hand, quickly oscillating data may be detected as set of spikes depending 

on what parameters are given for the spike detection. In POPLU data, spikes very often go up in just 

one data point and then slowly go back to previous values. Depending on the type of the sensor and 

reason of the spike returning to original value may take from minutes to days, these kinds of spikes are 

typically difficult to remove as the existing removing algorithms usually expect that the spikes behave 

symmetrically. 

Python code and the Jupyter notebooks developed in MODATS are summarised in Section 4.6 and 

listed in Table 6.2. 

4.4 Data Analysis 

Several data analysis tools have been developed, experimented and applied to the data sets from the 

POPLU and Prototype Repository experiments. Data cleaning tools developed and presented in the 

previous section can be used for various data analysis use cases as standalone tools for quick testing, 

but for normal use this is often not sufficient. The requirement is that all operations on data are 

documented and approved by authorised persons when the data is used and archived. Figure 4.8 

outlines the data analysis phase. To make this process easy for the user, Jupyter notebook templates 

are developed to be used to automate the analysis and documentation process. Using these notebooks, 

responsible persons approving the curated datasets can see transparently, what modifications has been 

done for the data and the approval can be also recorded in the notebook.  

 

Figure 4.8 – Data analysis phase outline. 
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4.5 Case Study Examples 

 Analysis case study: Did the POPLU experiment have an impact on nearby 
rock? 

The case study question of POPLU experiments having an impact on the nearby rock is a causality 

problem which cannot be solved with available observational data. Ideally, we should have two similar 

rocks to compare; one without any potential disturbances and one potentially disturbed by POPLU 

experiments. However, we formulated a general data-based problem:” Are rock sensor measurements 

different before and after POPLU experiments?” In order to study the rock data before and after POPLU 

experiments, we present here as an example results of Principal Component Analysis (PCA). PCA is 

practical basic tool in data analysis and easy to perform by domain experts with a template notebook for 

code and explanations.  

We selected 5 pressure sensors from Posiva pressure hole PH22 with good sensor quality and no clear 

change in behaviour after POPLU experiments when sensor values were plotted as a function of time. 

PCA looks at the shape of the cloud produced by these sensors in a 5-dimensional space. We examined 

how this cloud of points evolves in time. This corresponds to studying the mutual relationships of these 

pressure sensors. PCA provides new coordinates where the first principal component (PC) is the 

direction of the largest variance in the cloud. Each subsequent PC is orthogonal to the previous ones 

and describe a decreasing amount of variance in the data. Typically, first two to three components are 

of interest and the last ones describe only noise.  

The main PCA result of PH22 is illustrated in Figure 4.9. PCA is also a dimension reduction method as 

plotting the data in the coordinates of the first two PCs covers in this case already 95% of the variation 

in the 5-dimensional data. Data in blue-green shades and red-yellow corresponds to time before and 

after POPLU experiments, respectively. Time evolution, illustrated by shade change, shows that 

qualitative behaviour in After data is different from the hovering in the Before data. Inspection of how 

different sensors contribute to the PCs also provides information on the nature of PCs and how sensors 

produce information. PCA was performed in such a way that the long-term trend of pressure sensors 

did not impact the result. 

 

Figure 4.9 – Illustration of a change in pressure relationships before and after POPLU experiments 

detected by principal component analysis. 
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In terms of repository monitoring the outcome of the PCA poses needs for further studies and input from 

domain experts. Before this data analysis the conclusion has been that POPLU experiments are not 

visible in the nearby rock data. At this point we have a data analysis indication that the joint behaviour 

of 5 pressure sensors is qualitatively different after POPLU experiments, at least for some duration after 

the experiments. Unfortunately, the sensor data time range and quality does not allow to study if the 

“hovering” behaviour returns after a transient behaviour. The further questions include: 

• What is the normal behaviour of a similar rock under no possible disturbances? Compare PCA 

results of the two rocks. Is there normal annual variation in pressure? 

• Could there be an explanation that is unrelated to POPLU experiments? Or, is this an impact of 

POPLU construction work and the rock is in a transient phase before new equilibrium? 

At this stage, we can conclude that even simple, easily understandable and transparent data analysis 

methods can provide new insight into the data and their regular use may improve understanding of the 

repository phenomena (natural, intended actions or unintended consequences).  

 Analysis case study: Cleaning pipeline example utilising Jupyter notebook 

The Jupyter notebook Cleaning_pipeline.ipynb presents an example on how different functionalities in 

the cleaning.py can be used to clean a dataset for potential later use. In this case, it is assumed that 

data is cleaned for modelling purposes. The phases in the workflow include: 

1. Overview of dataset with visualisation of relevant sensors. Before visualisation any additional 
information is removed, for example, raw data files contain information where the data was 
initially originated. 

2. Detailed gap analysis (get_length_gaps). Detailed gap analysis reveals the location and length 
of the gaps in timeseries. Gaps mean no information, so for modelling purposes it should be 
found a time frame where the gaps are minimised. 

3. Selection of time frame. The most representative time frame is selected. The gaps that are left 
are removed with interpolation. 

4. Detection and removal of spikes (identify_spikes, remove_baseline, remove_spikes). The 
specified type of spike is detected and removed from selected timeseries. Remove_spikes use 
timeseries where the baseline has been removed as input. 

5. Visualisation of results. 

In all the phases, the intermediate results can be stored for traceability purposes. 

 Analysis case study: Detecting anomalies 

In this example (Anomaly_detection.ipynb), detect_outliers and detect_outliers_group methods from 

cleaning.py are used for identifying anomalies in a dataset. Anomalies can be identified either for each 

variable separately or for variables as a group. The purpose of the example is to show potential solution 

for detecting them, so the actual sources of the anomalies in the dataset are not known. 

Both outlier detection approaches are based on the LOESS and LOF algorithms. Seasonal-Trend 

decomposition using LOESS (STL) is from Statsmodels library [82]. First, LOESS is used to remove 

trend from the original timeseries. After that the Local Outlier Factor (LOF) is used to extract outliers 

from the residual. LOF algorithm from Scikit-learn library [83] is an unsupervised anomaly detection 

method. The number of detected outliers depends on the given parameters. 

In Figure 4.10 the sensors are treated as a group and the outlier detection notifies when there are 

exceptional events in those sensors as a group. The timeslots where the outlier is found is marked as -

one marker in the outliers graph bottom line. 
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Figure 4.10 Detecting outliers from sensors as a group.  

In Figure 4.11 only one sensor is studied and the visualisation shows the original timeseries, the 

extracted trend and residuals as well as the detected outliers in subplots.  

 

Figure 4.11 Detecting trend, residual, and outliers from a sensor.  

 Analysis case study: Detecting spikes in timeseries 

Spike detection and removal (Spikes_detection_removal.ipynb) shows in more detail how spikes can 

be detected and removed. It uses identify_spikes, remove_baseline, and remove_spikes methods from 

cleaning.py. First, identify_spikes returns the locations of the highest peaks, they are shown as dots in 

Figure 4.12. Some of the dots may hide other dots under them when the sensors are behaving similarly. 

Consequently, this figure may reveal events that have affected several sensors. Method remove_spikes 

looks for the start and end of the spikes and returns the cleaned timeseries. Instead of the original 

timeseries it uses a timeseries where baseline has been removed as input. Result of one of the sensors 
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after spike removal is visualised in Figure 4.13. The original timeseries is shown in blue, red dots reveal 

the locations of peaks, and the cleaned timeseries is in orange. In Figure 4.14 one cleaned spike is 

shown in more detail. As can be seen in removal of the spikes there is still room for improvement in 

finding the start and end of the spike. 

 

Figure 4.12 Locations of the peaks of detected spikes.  

 

Figure 4.13 Detected and removed spikes for one sensor.  
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Figure 4.14 One spike zoomed.  

 Analysis case study: A tool for detecting sensor drift.  

Sensor drift can be difficult to spot especially when the drifting happens slowly. The proposed approach 

uses nearby sensors to reveal potential drift in one or more sensors. It is assumed that in the long run 

the behaviour of nearby sensors correlates so in case there are changes in that correlation this may be 

caused by drifting. This case study is implemented in Drifting.ipynb and uses detect_correlation_change 

method from cleaning.py. 

The setup of the case study includes a dataset from SKB Prototype Repository. The dataset is divided 

into original dataset and a test dataset (Figure 4.15 a and b). A small artificial drift was added into values 

of one sensor (PXPTR6021) in the test dataset. The results are shown as heatmaps in Figure 4.15 the 

darker the colour the lower the correlation. Figure 4.15c shows the correlation in the original dataset 

between included sensors, Figure 4.15d the test dataset, and Figure 4.15e the difference between those 

correlations. The correlation of the sensor PXPTR6021 with the other sensors is in the original dataset 

quite high with two of the other sensors but in the test dataset it becomes low as is expected. However, 

with comparing what was the situation earlier we can confirm that there may be a drift in that sensor. 

Induced artificial drift in this experiment was linear, but also non-linear drifts were added and tested and 

detected with this approach. 
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Figure 4.15 – Detecting sensor drift in SKB dataset. 
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4.7 Summary of Developed Tools 

The developed tools are summarised in Table 6.2. Developed tools consist of the Python code modules 

and the Jupyter notebooks. 

Code modules are divided into tools for preprocessing and formatting POPLU raw data and the cleaning 

module. Further, formatting is performed with source-specific code modules for each POPLU data 

source as they all have different formats. Formatting first changes the file-format as csv and preprocess-

codes further combine the multiple raw files as one source-specific file.  

The goal of cleaning is to prepare the used datasets for a specific purpose. Functionality in the 

cleaning.py can be used to configure different types of cleaning pipelines depending on the need of the 

user. The methods in the cleaning module have been used for both POPLU data and Prototype 

Repository data. 

Python libraries that have been applied in the tools include Pandas [84] (McKinney, 2010) and NumPy 

[85] (Harris et al., 2020 for basic timeseries processing and Scikit-learn (Pedregosa et al., 2011), SciPy 

[86] (Virtanen et al., 2020), statsmodels (Seabold and Perktold 2010) and BaselineRemoval [87] (Haque 

2022) in outlier and spike detection. 

Jupyter notebooks in Table 6.2 are used as examples of how cleaning functionalities can be used in 

cleaning and analysis.  In addition, there are examples on rock data analysis. Jupyter notebooks can be 

used both as templates and documentation for making specific types of analysis with changing input 

data and parameters.  

4.8 Summary and Conclusions 

Reliable data treatment and analysis requires lot of additional information, not just the acquired sensor 

values.  Working with real-life sensor data poses questions on correct interpretation of the data, data 

anomalies, impacts of external events and correlations. Optimally datasets of several sensors need to 

be treated and analysed together making cross checking and adding information about known other 

events, even if at the time impacts are not seen in measured values. As data anomalies are many times 

due to other activities in the repository, applying domain knowledge of the whole environment and of the 

used sensors as well as data acquisition setup is also beneficial to ensure correct interpretations in 

further data analysis phase. In this documented work, discussions on the data, work processes and 

problems indicated such interdependencies and complexities of working with the data. However, only 

sensor data was available and used in these studies, when developing the tools and methods.  

The study of the rock data prompted for data that can serve as a “control” in contrast to a 

“treatment/intervention”. If data is collected only during an experiment, we are unaware of typical 

uninterrupted phenomena. Thus, it would be important to start collecting data well before any 

intervention, e.g., POPLU or Prototype repository type of experiment, to establish well the initial state, 

baseline of the environment. Similarly, data collection should last long enough after the experiment to 

establish the final state. If possible, data collection could go on to record the normal uninterrupted state. 

Not all data needs to be processed or analysed, keeping data for future purposes has also value. Despite 

of the current artificial intelligence (AI) hype, also more serious AI is developing at a fast phase.  As the 

tools and methods are evolving, new analysis can be performed also in the old datasets to find new 

phenomena. 

URL experiments established in the past have provided data from the experiments. The tools to handle 

or analyse the data have been very limited. One of the most important tools has been the Microsoft 

Excel. Data curation and processing has required substantial amount of manual work. The work 

performed with the old data sets in MODATS has shown that all raw data is valuable to be kept and 

stored for later usage. As the tools and methods are evolving during time, new analysis can be 

performed also with the old data sets to find new phenomena and data events.  
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New data science concepts brought into repository data management frameworks can provide modular 

open-source tools to enhance and improve data treatment and analyses. These tools can be used to:  

• Prepare data for further analysis. 

• Give an overview of the quality of data. 

• Be configurable to different kinds of needs. 

• Allow traceability for what is cleaned and why. 

• Automate laborious and monotonous tasks. 

Benefits of the open-source tools increase if WMOs make some example data available for the research 

community to experiment the method and tool development. Further, from the research community point 

of view unified data format and meta data greatly facilitate the data usage. Instead of sharing larger 

amounts of repository monitoring data, WMOs could consider allowing computations on their proprietary 

data while ensuring data confidentiality.  

Generic high-level common practices and standards initiated by international actors like IAEA or OECD 

NEA can lower the threshold to agree and adopt common standards to exchange data and information 

between WMO domain actors, a noteworthy example is the OECD NEA RepMet libraries, which outlines 

high level guidelines e.g. for the metadata definitions. Large actor group cocreated work can have faster 

larger impact and is easier to be agreed than a single actor proposal.  

During the interviews as well as earlier work with the WMOs has also shown that confidentiality and 

information security versus openness need to be considered as in the nuclear field there are more tight 

restrictions concerning data and communication than in other domains. 
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5. PRACLAY (EURIDICE) 

Authors: Jan Verstricht (EURIDICE) 

Editor: Matt White (Galson Sciences) 

5.1 Introduction 

The HADES URL, managed by EURIDICE, has been operational since the early 1980’s. Since then, the 

experimental data obtained have been managed by different database systems that allowed for basic 

retrieval, reporting and graphing of the sensor data. Further analysis of the data has usually been 

performed by the user, based on their specific needs (e.g., to follow-up experimental performance, and 

to compare experiment monitoring data with model predictions). Such analysis typically requires some 

basic data cleaning as the original data sets usually contain data that are not representative of the 

phenomena investigated owing to different reasons, ranging from data acquisition issues, power failures, 

planned interventions or accidental events. Owing to the lack of a uniform approach with each user 

typically undertaking their own data cleaning work, overlapping work has been undertaken and different 

data treatment methodologies followed. Furthermore, no standard approach has been available for data 

validation, which is particularly important for the supply of data to external users.  

As part of the MODATS data management task, EURIDICE has investigated the development of a 

uniform data cleaning and validation process. 

5.2 Description of the Reference Experiment 

The data sets used in this work are generated from selected sensors used to monitor the PRACLAY 

Heater Test [88]. The experimental setup is designed to investigate the impact of a large-scale thermal 

load on the Boom Clay, which leads to perturbations in the clay that might affect its performance as a 

host rock. The Heater Test is intended to be representative of a generic disposal gallery for heat-emitting 

waste and was conceived to be as independent as possible of the final repository design and to be 

conducted under a well-controlled and a reasonably conservative combination of thermal, hydraulic and 

mechanical boundary conditions. 

The test consists of a gallery (Figure 5.1a) in the clay host rock, accompanied by a network of 

observation boreholes (Figure 5.1b). Boreholes drilled and instrumented from the Connecting Gallery 

(CG) were drilled prior to the excavation and lining of the PRACLAY Gallery (PG). From the PG, 

additional instrumented boreholes were installed to extend the observed zone, in particular in the vertical 

direction.  

The main test phases associated with the PRACLAY Heater Test are listed below in chronological order: 

• 2001-2002: excavation of CG. 

• 2006: Installation of instrumented boreholes from the CG. 

• Oct – Nov 2007: Construction of PG. 

• 2008 – 2009: Installation of instrumented boreholes from the PG. 

• 2011-2014: Backfilling of the active PG with sand, installation of a seal for closure of the PG, 

saturation and pressurisation. 

• Nov 2014: Start heating. 

• Aug 2015: Stationary heating phase; heating with a constant temperature of 80°C on the inside 

of the PG lining. 
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(a) Setup in the PG 

 

(b) Observation boreholes instrumented with pore pressure and temperature sensors around PG 

Figure 5.1 - General view of the PRACLAY experimental setup in HADES URL. 

5.3 Objectives 

The objective of our work is to obtain a structured and uniform management of the PRACLAY 

experimental data. This includes several sub-objectives: 

• Elaboration of a data cleaning and validation process that is more efficient, uniform and 

transparent than the range of approaches used to date, and results in validated data sets. 

• Development and implementation of the supporting tools for: 

o Management of metadata. 

o Data visualisation (to support data validation). 

o Reporting of experimental data. 

• A database structure supporting these functionalities. 

• The generation of validated data files adapted to the needs of the different users, including: 

o Experimental follow-up. 

o Data modellers. 

o External expert users (e.g., other research organisations and PhD students). 

o Citizen stakeholders. 
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5.4 Methods 

The development of the data treatment and management approach is based on a selected sub-set of 

the PRACLAY experimental data. These data consist of time series sensor signal values. For most 

sensors used in PRACLAY the signal values are stored in the main database. A range of sensors were 

selected for inclusion in this test case based on the following considerations: 

• Inclusion of a range of sensor types. 

• Inclusion of a range of data acquisition equipment. 

• Inclusion of data with variable signal qualities such as noise and resolution. 

• Inclusion of data containing various anomalies (e.g., artefacts, thermal disturbance, and sudden 

or gradual sensor failure) 

• The relevance of the sensor data to analysis and comparison with model predictions 

(considered to be the primary use of monitoring data). 

Within MODATS, the original data files were also uploaded to the Zenodo platform for optional use by 

the other teams within Task 2. 

The actual process of data cleaning and validation consists of a machine-assisted screening of the 

sensor data, highlighting (labelling) the data of interest (e.g., anomalies, transients, outliers), followed 

by an expert assessment of the data. The expert assessment also uses metadata about the sensor 

(e.g., particular knowledge on the sensor behaviour) and about the experimental events (e.g., logbook 

information on incidents that have occurred). This might also lead to a future improved management of 

these metadata (e.g., improved logbook format). 

To test the current ideas on data cleaning and validation, the related algorithms are coded in a Python 

integrated development environment. When the tests are successful (i.e., the algorithms can be applied 

to the real data sets), the code will be integrated in the LabTool environment. This is a database, which, 

for our purposes, acts as a laboratory information management system (LIMS), as it contains the 

metadata from the sensors. Recently, the sensor measurement data in the main database are being 

linked with the sensor definitions in LabTool, so that data retrieval and processing can be performed 

within this environment.  

5.5 PRACLAY Data Set 

 Selection Criteria 

To limit the amount of data for this exploratory research, whilst covering a range of challenges for 

monitoring data treatment and management, a selection of the PRACLAY data was made according to 

the following criteria: 

• Different data acquisition systems: Most of the data has been acquired through automated data 

acquisition systems. Different systems are in use, resulting in varying characteristics, such as 

data resolution. 

• Sensors with different performance: For different reasons, but mostly related to the harsh 

environmental conditions, a significant number of sensors have failed since their installation. 

Sometimes this failure did not happen suddenly, but was preceded by a gradual degradation of 

the sensor performance, which requires also an appropriate interpretation of the monitoring 

data. 

• Different data quality: Sensor data quality characteristics such as signal-to-noise ratio, or more 

general signal stability, might also require additional data processing to allow a proper 

interpretation and reporting. 

• Presence of various events: Sensor data with typical anomalies, such as those resulting from 

manipulation (e.g., calibration, sensor replacement), physical tests (e.g., permeability tests, 

geochemical sampling), artefacts (impact of unexpected thermal process on measurement of 



EURAD Deliverable 17.6 – Advancements in Monitoring Data Management, Modelling and Visualisation 

EURAD - Monitoring Equipment and Data Treatment for Safe Repository Operation and Staged 
Closure, Deliverable 17.6 
Dissemination level: Public 
Date of issue of this report: 07/05/2024  Page 84  

temperature and pore pressure), and sensor failure, are selected to test the robustness of the 

cleaning and validation methods and algorithms. 

• Scientific relevance: To include the feedback from the data users, data that have been mainly 

used in scientific analysis of the experiment have been selected. 

 Proposed Data Set 

More than 1000 sensors have been installed in the context of the PRACLAY setup. Based on the 

selection criteria, porewater pressure and temperature sensors have been selected for the work in 

MODATS, as these data are most extensively used in the scientific analysis. Most of these sensors have 

been installed through instrumented boreholes. In addition, porewater pressures and temperatures are 

also measured in the PG and its lining, as they give essential data on the source term (simulated 

disposal gallery with heat source). 

All these considerations have resulted in incorporation in the MODATS PRACLAY Data set of the 

following sensors: 

• Pressure transmitters connected to filters integrated in borehole casings installed from the CG 

instrumented boreholes: These data include measurements from pressure transmitters 

connected to filters integrated in three borehole casings (CG35E, CG42E, CG55E (Figure 

5.1b)). The boreholes are drilled from the CG and are up to 45 m deep. All boreholes are 

horizontal and perpendicular to the CG axis. The boreholes are cased with a stainless-steel 

liner. Sintered stainless steel filters are integrated in this liner to collect the porewater of the 

Boom Clay. Each filter is connected through a twin-tube capillary tubing (inner diameter 2 mm) 

to a pressure transmitter, which is located in the CG (hence, the capillary tubing length can 

reach up to 45 m). 

All pressure transmitters included in this data set have a 4-20 mA signal output. The different 

setups are further read out by three different types of data-acquisitions systems for historical 

reasons. Depending on the data acquisition system, this current signal is then measured 

directly, or it is measured through a precision shunt resistance (typically 250 ohm) to convert 

the current signal into a voltage (in this case 1-5 V). 

The pressure transmitters are the only type of sensors that remain accessible. They are 

regularly calibrated and hence, accuracy and drift data are available for these sensors.  

Typical deviations in the measurement data are due to manipulations, which are mainly caused 

by calibration, porewater sampling, and permeability tests. Other simple operations such as 

disconnections can cause anomalies. Several pressure transmitters have also been replaced 

to adapt the measurement range to the actual conditions. This has caused a sudden change in 

the sensor signal, while the calculated signal should remain the same (through an adapted 

calibration formula).  

• Pressure transmitters connected to filters integrated in borehole casings installed from the PG: 

This data set contains the signal values from the pressure transmitters that are connected to 

the filters integrated in the borehole casings PG30D and PG50D. Owing to problems with their 

installation (e.g., capillary tubing running along the boreholes open to the heated gallery and 

next to the heater elements), the pressure measurements are more prone to artefacts, for 

example those caused by unexpected thermal processes. 

• Thermocouples installed next to the filters of the CG instrumented boreholes: These data have 

limited anomalies, but include limited features such as temporary increased noise, or 

disturbances owing to pumping in geochemical filters (with unstable temperature). 

• Thermocouples installed next to the filters of the PG instrumented boreholes: The cabling for 

these thermocouples is routed through the heated gallery, and, as a consequence, these signals 

are prone to drift, and to sudden or gradual failure. 
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• Pressure transmitters connected to filters inside the backfilled PG: The gallery is backfilled with 

sand – a high permeable medium in order to create and maintain a source term with a well-

defined boundary condition (uniform water pressure over the complete backfilled gallery length). 

In theory, the seven pressure transmitters should indicate exactly the same value, so these data 

have been included to allow for cross-comparison of monitoring data. 

• Thermocouples integrated inside the concrete lining of the PG: Since the start of the heating 

phase, about half of these sensors have failed after functioning for varying periods; two different 

data acquisition systems are being used to acquire the sensor signals. 

• Thermocouples attached to the heater cables inside the PG: These sensors typically detect the 

periodic switching of the heater cables; about half have failed, and exhibit different trends in the 

sensor signal prior to failure (sudden or gradual drift, unstable signal). 

 Current Data Management Practices 

Most sensors are connected to data acquisition front ends or data loggers. The measured sensor values 

are then transferred to the database server. This server stores the monitoring data, undertakes 

preprocessing (e.g., calculation of engineered data) and makes the data available. Direct consultation 

of the data currently uses a web-based GUI. This whole system is called Daily, see Figure 5.2 for the 

structure of this system.  

 

Figure 5.2 - Structure of the Daily database system used for the HADES (and thus PRACLAY) data. 

Daily currently collects monitoring data from approximately 3,500 sensors. The data is stored in a central 

database in standard folders, files and tables. Additional functionalities of Daily are graphing, export and 

compression (mainly averaging) of data. Further, to assist in the operation of the various experiments 

being undertaken in HADES, an alarm system is included. It checks if the sensor data are regularly 

updated, if they do not exceed limits, and if the monitoring devices are still online. 

To provide more efficient data management (e.g., periodical automated reporting), commercial software 

(DiaDEM from National Instruments) has been implemented for the PRACLAY data managed in Daily. 

In particular, it is used to generate a safety report each day (for a quick daily check of safety-relevant 

variables), weekly data reports (frontline scientific follow-up) and quarterly reports for the main client. In 

addition, it allows for customised graphs. 

These tools do not incorporate a tool to support the management of monitoring equipment (e.g., sensor 

inventory, follow-up of calibrations and maintenance). Therefore, the LIMS tool, which is called LabTool, 

is being developed by the nuclear research centre SCK CEN. In this tool, all kinds of laboratory items 
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(e.g., sensors, data acquisition equipment, cabinets and integrated setups, and chemicals) can be 

defined and structured in a hierarchical way. The complete life cycle of the laboratory items (e.g., during 

commissioning, maintenance, updates, and out-of-service periods) can be recorded. 

In parallel, a more geographically based GeoScientific Information System (GSIS) was developed by 

the Belgian WMO ONDRAF/NIRAS. Currently, it mainly manages all borehole related information, such 

as survey data (coordinates), borehole logs, core logs, and analyses of borehole filter water samples.  

Some overlap between the data from GSIS and LabTool exists (e.g., pressure transmitters). The current 

idea is to merge LabTool and GSIS into one tool, and to extend it with data cleaning and validation 

functionalities.  

 Structure Of Metadata 

In addition to the actual sensor signals, a proper interpretation of the signal values requires the 

knowledge of the metadata linked to this setup. Metadata include sensor specifications, installation 

records (e.g., sensor coordinates, data acquisition chain) and logbooks listing all events relevant to the 

setup chronologically.  

Currently, most of these data are not structured yet in a uniform way, as it is typically up to the experiment 

responsible person or principal investigator to keep track of all metadata. Currently, a structure is defined 

in LabTool in which all metadata will be stored in a more uniform way. This will also serve as a guideline 

for the persons operating the setup. 

5.6 Data validation 

 Definition 

In the context of the operation of an experimental setup, data validation can be defined as the 

assessment of the measured data (or other observations), by adding an indication (or label) to each 

data point about its validity. The concept of “validity” is not binary (valid or not valid), but, depending on 

the user of the data, more labels indicating the validity should be considered. The labels should take 

into account the interest of different users and state if the data are valid for their purpose or not. For 

example, sensor signals which are of interest to the instrumentation engineer (e.g., when checking for 

sensor malfunctions), might not be of interest for a modeller who wants to check a long-term model 

prediction with the experimental data. 

The end result of the data validation process is therefore a data set with these labels. By filtering the 

labels, the user then obtains the wanted data set. This data set can then be further optimised by e.g., 

data reduction (e.g., daily averages) or smoothing.  

 Development of a Data Validation Methodology 

To establish a validated data set from the original signal data, the following phases can be distinguished: 

• Preparation of the data file (data query / file import) into a standard format. 

• Query of the relevant metadata which are usually specific for each sensor type, e.g. the range 

of sensor signals (including optional tolerances), the physical range – e.g., no negative 

temperatures in PRACLAY Heater test, and the resolution. 

• Screening of the data based on metadata and modelling data to detect deviations from a 

“normal” evolution: 

o Out of limit sensor signals. 

o Out of physical range. 

o Discontinuities, including value (outliers) and time (missing data). 

o Sudden changes. 

o Transients. 
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• Expert interaction (principal investigator, data responsible) to confirm and/or add data labels 

(typically with reference to logbook information): 

o Labelling of sensor performance issues, such as sensor failure and sensor drift. 

o Labelling of intended operations, such as scientific interventions (e.g., sampling and 

permeability tests), technical maintenance/interventions, and calibrations or other 

sensor diagnostics. 

o Labelling of other disturbances, such as data acquisition system glitches, power 

failures, borehole drilling, abnormal temperature variations, and other incidents (e.g., 

cable or tubing disconnected inadvertently). 

• Generation of validated data set: 

o Adapted database structure with one or more label(s) attached to each data point. 

o Dedicated file format for external users. 

o Data treatment (e.g., averaging and/or smoothing) as required. 

 Preliminary Implementation 

Owing to the large amount of experimental data that have been/are being gathered, and as most of 

these data are acquired in an automated way, it is evident that many tasks of the data validation process 

should be automated through scripts. Currently, these are developed in a Python integrated 

development environment, and include: 

• Query of Time-Series Data and Metadata: Most sensor time-series data are stored in Daily. A 

simple query allows the user to load the data into a temporary structure. Further, the metadata 

– relevant for the data set considered – are read. 

• Screening of Time-Series Dataset: Anomalies can result from various events; in order to detect 

and label them correctly, the specific features of each event should be uniquely characterised. 

The specific features of the events are then quantified by some efficient indicators of the relevant 

data such as:  

o Basic statistics (minimum – maximum – average – linear trend) over the related period 

of the events (e.g., daily or weekly). 

o Noise levels, standard deviation (time window to be defined by expert). 

o Resolution. 

o Gradient over time. 

A dedicated Python script allows this screening to be undertaken, anomalies to be detected, 

and data to be labelled. The script also produces a visualisation of the data. 

• Expert Interaction and Interpretation: The expert (e.g., principal investigator or data scientist) 

checks the result of the script and confirms, modifies, details, dismisses the labels. As 

interpretation requires understanding of the experimental conditions, other data sets can be 

accessed to check for correlations, e.g., the influence of temperature on other sensor data. Also, 

the logbook will be consulted to explain anomalous behaviour. 

• Update of the Database: The result of the previous actions is then confirmed and uploaded in 

the database.  

• Generation of Data Files: From the validated data, data files can be generated according to the 

needs of the data user by querying with the appropriate selection criteria based on the data 

labels. Further data treatment can be considered. 

5.7 Results 

Data cleaning and validation results for the different sensor types are detailed below, illustrating how 

the Python scripts developed in MODATS address a sub-set of the data challenges identified in 

Section 5.5.1.  
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 Pressure Transmitter Data from the CG Multifilter Piezometers 

As these pressure transmitters are accessible, malfunctions of the transmitters themselves are almost 

non-existent. Disturbances or anomalies in the data can be attributed to interventions, such as sensor 

maintenance (calibration, replacement, or simple check of connection between quick-connect ends) and 

experimental manipulations (permeability tests or porewater sampling). Each event-induced anomaly 

has specific features which can be quantified by specific indicators of the associated time-series data, 

for example: 

• Permeability tests start with a sudden pressure change followed by a nearly constant pressure 

(with low standard deviation) for more than 1 day. 

• Porewater sampling starts with a sudden pressure drop to atmospheric pressure and remains 

nearly constant for a couple of hours. 

• Sensor calibration can be characterised by a sudden drop to atmospheric pressure followed by 

quick recovery within an hour. 

Figure 5.3 shows the graphs corresponding with porewater pressure data from three sensors located in 

borehole CG35E before and after a data cleaning and validation process. The initial data contain many 

anomalies, including outliers, calibration and other interventions. Only the data points resulting from the 

permeability tests have been maintained in the processed set (at the right), these data points are useful 

for users who want to derive the permeability of the Boom Clay close to this filter. Depending on the 

choice of the data user, different anomalies can be kept or excluded from this data set by filtering the 

labels available in the Screening of Time-Series Dataset script. 

Expert judgement is sometimes essential for correct anomaly detection, and this is the case for the time-

series data from these three sensors. These sensors are located close to the PG. When the excavation 

front passed by these sensors, significant pressure changes between two consecutive data points were 

observed. The magnitude of such change is physically normal. Therefore, the criteria to detect 

anomalies should be adapted for this excavation phase, otherwise, it is possible these data points are 

mistaken and labelled as a different event (e.g., calibration). 

  

(a) All data without cleaning (b) Data after cleaning but keeping permeability test 
data sets 

Figure 5.3 - Time-series data from three pressure sensors in CG35E:CG35E-PP-07, CG35E-PP-12, 

CG35E-PP-16. 

Another example is shown in Figure 5.4 for data from the pressure transmitters in borehole CG42E. 

These data illustrate disturbances owing to regular porewater sampling since 2020. The data points 

associated with these disturbances during this period are labelled as a separate category (i.e., 

geochemical sampling), these data are also useful for users who want to derive the Boom Clay 

permeability.  
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(a) All data without cleaning (b) Data after cleaning but keeping permeability test 
and sampling data sets 

Figure 5.4 - Time-series data from three pressure sensors in CG42E: CG42E-PP-2, CG42E-PP-7, 

CG42E-PP-11. 

Finally, data from the CG55E pressure transmitters are shown in Figure 5.5. The figure at the right 

shows the cleaned data set, with all disturbances (including permeability tests, sampling and 

calibrations) removed, which is generally useful to the majority of end users. 

  

(a) All data without cleaning (b) Data after cleaning and without anomalies 

Figure 5.5 - Time-series data from three pressure sensors in CG55E: CG55E-PP-01, CG55E-PP-08, 

CG55E-PP-11. 

 Pressure Transmitter Data from the PG Multifilter Piezometers 

As pressure transmitters are accessible, malfunctions of the transmitters themselves are almost non-

existent, but unexpected and abnormal data points are still observed in the time-series data from some 

PG borehole filters, which may be explained by the artefacts of the instrumentation setup. The 

connection tubes between the pressure transmitter and the filter are typically quite long, and with this 

tubing running along the borehole casing open to the backfilled gallery and in the heated gallery, the 

unexpected heat transfer in the open borehole (i.e., convection) and sudden temperature variations 

(e.g., heater failure, or switching of heater cables) can cause complex pressure evolutions and 

transients. As artefacts are therefore more likely in these data sets, modelling data are therefore 

essential as an auxiliary tool in the cleaning and validation of measurement data. 

Figure 5.6a shows all data from three transmitters in the PG30D borehole, Figure 5.6b shows the 

cleaned data by removing data from permeability tests and calibration etc. PG30D-PP-02 shows some 
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unexpected non-smooth data, which are labelled as doubtful after comparing them with the modelled 

data (Figure 5.6c), and this segment of data is removed. 

  

(a) All data without cleaning (b) Data after cleaning but keeping the doubtful data 

 

(c) Data after cleaning based on modelled data 

Figure 5.6 - Time-series data from three pressure sensors in PG30D: PG30D-PP-01, PG30D-PP-02, 

PG30D-PP. 

 

Another example is shown in Figure 5.7, where the results from the data cleaning and validation of some 

pressure transmitters connected to the PG50D filters are graphed. It is clear that the PG50D-PP-01 

measurements are doubtful as they do not agree with the expected data from the model, although it is 

up to the expert judgment to indicate which data (and why) should be labelled as “doubtful”. 

 Pressure Transmitter Data from the PG Backfill Filters 

Figure 5.8 shows the measurements as recorded by the pressure transmitters connected to the filters 

in the backfill of the PG. The disturbances are mainly due to (short time spans of) calibration activities, 

and also to short-term heater failures. The results of the cleaning, excluding both disturbances, are 

shown in the graph at the right (Figure 5.8b). 
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(a) All data without cleaning (b) Data after cleaning but keeping doubtful data 
which duration is difficult to judge 

 

(c) Numerical modeling data 

Figure 5.7 - Time-series data from three pressure sensors in PG50D: PG50D-PP-01, PG50D-PP-05, 

PG50D-PP-10. 

 

  

(a) Data without cleaning (b) Data after cleaning with calibration and power 
failure related anomalies being excluded 

Figure 5.8 - Time-series data from six pressure sensors in the backfilled PG: PG-PP-S1, PG-PP-S4, 

PG-PP-S5, PG-PP-V1, PG-PP-V3, PG-PP-V5. 
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 Thermocouple Data from the CG Boreholes 

In general, anomalous data are rather limited in the measurements from the thermocouples mounted in 

the instrumented casings that have been installed from the CG, as their environmental conditions are 

quite favourable (dry, atmospheric pressure). Data from the thermocouples installed in the CG30E 

multifilter piezometer (Figure 5.9a) show limited outliers. Some thermocouples show disturbances owing 

to circulation of (hot) water in the capillary tubing of one of the filters used for geochemical on-line 

monitoring of the porewater. As this capillary tubing runs along some thermocouples, the circulation of 

hot water affects the thermocouple reading, which is no longer representative of the clay temperature 

next to the borehole casing. These measurements are then labelled and can be excluded from the final 

data set (Figure 5.9b). The seasonal variations in sensor CG30E-TC-10 TC (close to borehole mouth) 

reflect yearly and normal temperature evolution in the HADES URL. The CG35E thermocouples show 

a similar behaviour to the CG30E thermocouples (Figure 5.10). 

  

(a) All data without cleaning (b) Data after cleaning by removing the data segment 
with disturbance from pumping 

Figure 5.9 - Time-series data from six pressure sensors in the backfilled PG: PG-PP-S1, PG-PP-S4, 

PG-PP-S5, PG-PP-V1, PG-PP-V3, PG-PP-V5. 

 

  

(a) All data without cleaning (b) Data after cleaning by removing the data segment 
with disturbance from pumping 

Figure 5.10 - Time-series data from six thermocouples in CG35E: CG35E-TC-02, CG35E-TC-06, 

CG35E-TC-11, CG35E-TC-12, CG35E-TC-13, CG35E-TC-15. 
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 Thermocouple Data from the PG Boreholes 

Thermocouples mounted in the PG multifilter piezometers are much more prone to showing disturbed 

measurements and failures. This is because of the harsher conditions (heated and saturated conditions, 

pressurized to more than 2.5 MPa), and also owing to the more complex installation (in particular, owing 

to extension wiring with the additional connections made in the field). 

5.7.3.1 Thermocouples of PG70S Multifilter Piezometer 

This instrumented casing, installed radially and horizontally from the PG, contains seven thermocouples, 

with PG70S-TC-07 being closest to the heated gallery (and hence with the highest temperature). From 

the measured data (Figure 5.11a), it is observed that most of the thermocouples failed in the first years 

of the heating phase (which started in November 2014). In addition, the temperature range shown by 

these thermocouples before their failure is much smaller than what was expected from the modelled 

data (Figure 5.11b). 

This difference is most probably owing to the unexpected effect of local heat convection inside the 

borehole casing, creating an artefact, which was not taken into account in the model. The modelling only 

considers the heat conduction inside the clay formation. 

Data cleaning would consist of indicating the measurements obtained after failure (which can be defined 

as a sudden deviation from the smooth initial evolution), while the data validation would consist of 

rejecting the whole data set – in particular after the start of the heating. 

 

  

(a) All data without cleaning (b) Modelled data 

Figure 5.11 - Both measured and modelled time-series data for seven thermocouples in PG70S: 

PG70S-TC-01, PG70S-TC-02, PG70S-TC-03, PG70S-TC-04, PG70S-TC-05, PG70S-TC-06, PG70S-

TC-07. 
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5.7.3.2 Thermocouples of PG30D Multifilter Piezometer 

Figure 5.12 presents the results from the data cleaning and validation performed on three thermocouples 

in PG30D (PG30D-TC-02, PG30D-TC-05 and PG30D-TC-07). The measurement time-series data 

present an obvious failure for PG30D-TC-05 and PG30D-TC-02 (Figure 6.12a). If comparison is made 

between measurement data and the corresponding modelling data at the three sensors, a different trend 

of evolution can be clearly observed for PG30D-TC-07 after 2021 and for PG30D-TC-05 after 2017 

(Figure 6.12b). Since the change of the evolution trends observed in Figure 5.12a is unexpected, the 

unexpected data should be labelled as doubtful data. Figure 5.12c shows the cleaned data by removing 

the data after sensor failure and the doubtful data.  

 

  

(a) All data without cleaning (b) Modelled data 

 

(c) Data after cleaning with suport from modelling 

Figure 5.12 - Time-series data from three thermocouples in PG30D: PG30D-TC-02, PG30D-TC-05, 

PG30D-TC-07. 
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 Thermocouples of PG70D multifilter piezometer 

Similar cleaning and validation results have been obtained for three sets of thermocouple data from the 

PG70D borehole (Figure 5.13). 

 

  

(a) All data without cleaning (b) Modelled data 

 

(c) Data after cleaning with suport from modelling 

Figure 5.13 - Time-series data from three thermocouples in PG70D: PG70D-TC-01, PG70D-TC-04, 

PG70D-TC-06. 
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 Thermocouples Integrated in the PG Lining Segments 

Sensor failures are also present in the thermocouples integrated in the concrete segments of the PG. 

Figure 5.14 shows the data from some sensors; the failed ones show temperatures reflecting the 

environmental conditions in the HADES tunnel as the thermocouple inputs on the data acquisition 

system have failed. Evidently, these values are not representative for the actual experimental conditions, 

and they are also excluded during the data cleaning process. 

  

(a) All data without cleaning (b) Data after cleaning 

Figure 5.14 - Time-series data from seven thermocouples at the extrados of segment 4 (S4) of seven 

rings. 

 Thermocouples Attached to the Heater Cables Inside the PG 

A similar approach as for the previous case (thermocouples in the lining segments) has been applied 

for the thermocouples that are attached to the heater cables. Their original objective was to check these 

cables against overheating. Owing to the harsh conditions, about half of the installed thermocouples 

failed. Figure 5.15 shows the monitoring data from the thermocouples mounted in Sector 3 for both the 

normal cables and redundant cables, Figure 5.15a presents all data without cleaning, and Figure 5.15b 

graphs the data after cleaning by excluding outliers and data after sensor failure. 

 

 

 

(a) All data without cleaning (b) Data after cleaning 

Figure 5.15 - Time-series data from seven thermocouples at the extrados of segment 4 (S4) of seven 

rings.  
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5.8 Discussion and Conclusions 

Monitoring data is often prone to errors and perturbations such as sensor manipulation, calibration 

disturbance, data transfer problems, and sensor malfunction. To guarantee reliable and high-quality 

data to be delivered to the users, and to ensure high-quality long-term data management, all data need 

to be carefully curated and managed by means of cleaning, validating, filtering, and labelling. With 

respect to labelling, each time series can be affected by different temporary events, namely normal 

functioning, sensor failure, sensor calibration or specific physical test, which can result in complex data 

values. Identifying in each recorded time series such possible sub-periods (that is, performing 1D data 

segmentation) is of primary importance for further use of the collected data. 

In this data management process, an important part of the work is performed through algorithms. They 

prepare the work for the human expert by identifying suspect data and labelling them. In addition, they 

can provide relevant statistical information, as well as the adapted visualisation tools, to assist the expert 

judgment process.  

The application of the method developed has shown that it has to be adapted to the particularities of 

each sensor type or measurement variable. For example, the approach used to screen thermocouple 

data is different to the approach used to screen porewater pressure measurements. 

The data cleaning and validation method developed in MODATS for the PRACLAY test case is not 

optimised. The next steps in developing the method will include: 

• Good knowledge and understanding of the experiment (different phases, boundary conditions) 

is essential, for example, the excavation phase exhibits fast pressure changes (even 

identification of individual excavation steps is possible), requiring specific attention during this 

phase for sensors close to PG. 

• Each event has its specific characteristic in terms of porewater pressure, these features have 

to be characterised and quantified with some human effort. 

• Correct detection and labelling of anomalous experimental data require a systematic 

documenting of all relevant events (which are part of the metadata); hence, metadata on the 

experimental setup (and by extension, on the repository) need a well-designed framework to 

make sure that these metadata are as complete as needed, and can be retrieved in a uniform 

way. In this context, the work performed in the RepMet Initiative [78], as well as, more in general, 

the concept of FAIR data [89] could be incorporated within the method. 

The requirements on human effort can be optimised by applying data-driven ML techniques, which can 

monitor information from critical systems and flag anomalies as they occur [90]. Human experts can 

then view these warnings, and decide to deal with them on a case-by-case basis. This would decrease 

the amount of work that human experts have to do, thereby decreasing the burden to hire more and 

more experts. Building ML systems that can process information and identify anomalies is more cost-

effective than creating human-based teams. It can also detect changes in the signal that are too subtle 

for humans to identify. The present data sets can serve as training data for such ML algorithms. 

In order to perform the time series data segmentation in a more automated way, different types of state-

of-the-art deep NN models suited to sequential data processing will be explored in future work, namely, 

recurrent NNs (e.g., [91]), and 1D convolutional networks (e.g., [92]). 
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6. Discussion: Advances in Data Management and Digital 
Twins in MODATS 

Authors: Matt White (Galson Sciences), and, for Section 6.5, Martin Schoenball and Edgar Manukyan 

(Nagra), Arto Laikari (VTT), Jan Verstricht (EURIDICE) and Guangjing Chen (SCK CEN) 

In this section, the outcomes from the six test cases are considered together to identify key integrated 

messages on data management. These key messages do not reflect specific tools or methods used in 

the test cases, but rather set out common principles that apply in all repository monitoring contexts. The 

discussion is structured as follows: 

• Section 6.1 identifies integrated messages on data processing. 

• Section 6.2 identifies integrated messages on data storage. 

• Section 6.3 identifies integrated messages on data modelling and visualisation. 

• Section 6.4 discusses the use of digital twins in the context of monitoring during repository 

operation. 

• Section 6.5 presents a generic workflow focused on the use of monitoring data to enhance 

system understanding. 

6.1 Data Processing 

In MODATS, data processing was considered in most detail in the Nagra FE experiment test case, the 

VTT POPLU and Prototype Repository test case and the EURIDICE PRACLAY experiment test case. 

As noted in the introduction (Section 1.3), monitoring data are prone to anomalies. These anomalies are 

caused by a range of internal and external (to the sensor) processes and events, including the influence 

of calibration and maintenance activities, sensor fouling, calibration drifts, variations in electrical inputs, 

data transfer problems, and configuration errors in the data acquisition system. To facilitate reliable 

analysis, all measurement data have to be processed prior to use, data errors have to be detected and 

handled, and data has to be in a harmonised form to allow cross-comparison of data from different 

sources. Data processing is the manipulation of raw data to make it suitable for its intended use. 

Prior to undertaking data processing, user needs have to be identified as multiple actors have an interest 

in using data from repository monitoring. The actors within the monitoring process include scientists, 

engineers, decision makers, technicians, software developers, regulators and members of civil society. 

Processing does not have one end goal and data sets after processing will differ according to the user 

requesting the data. For example, an instrumentation engineer might have a focus on data anomalies 

for each specific sensor, whereas a modeller may want a reduced harmonised data set with all 

erroneous values removed. As has been highlighted in the POPLU and Prototype Repository, and 

PRACLAY test cases, a modular approach is useful in maximising flexibility in data processing (see also 

the generic workflow presented in Section 6.5).  

The nature of data acquired from sensors varies. Some sensors automatically output parameter values, 

whereas some output raw data (e.g., in the form of voltages). For all sensor types, the original raw data 

should be stored and kept available for the period of the monitoring programme. Data processing should 

not delete data from the data set, as there may be a need to review and revise interpretations at a later 

stage in the programme. Instead, data processing should identify and flag data considered to be an 

anomaly. 

The test cases in MODATS have provided an opportunity to identify and categorise the different types 

of anomalies that can occur in monitoring data (Table 6.1). These anomalies can be identified through 

consideration of the characteristics defined in the table. These characteristics are defined in a qualitative 

sense in Table 6.1 because the data processing approach of (time series) measurement data needs to 

be customised according to the sensor type (e.g. characteristics of thermocouple data are different from 

those of porewater pressure transmitters). 
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Table 6.1 – Identification of the main types of monitoring data anomalies and identification of options 
for their management. 

Category Characteristic (and example, if 
available) 

Processing Options 

NaN No value is recorded for a particular 
timestep or for a specific period within 
the monitoring data set 

Options include averaging of the adjacent values, 
or leaving the timestep as NaN and labelling the 
timestep so that the value can be left out from 
some uses 

Null Value Value recorded for a particular 
timestep is zero 

Options include averaging of the adjacent values 
or leaving the timestep value as zero and labelling 
the timestep so that the value can be left out from 
some uses 

Duplicate 
Values 

The data file includes more than one 
value for a time step in a specific 
location or for a specific sensor 

Options include averaging of the values, labelling 
of the values as uncertain to ensure they are not 
used in further analyses, or selection of a 
preferred value based on a pre-determined 
method 

Non-Physical 
Value 

Value recorded is not possible (e.g., 
negative relative humidity) 

These data would be flagged and removed from 
data sets before use 

Implausible 
Value 

Value recorded is not reasonably 
expected (e.g., negative temperature) 

These data would be flagged and removed from 
data sets before use based on a pre-defined 
approach for each parameter (this might include 
use of uncertainty ranges based on modelling, or 
definition of plausible parameter value ranges 
defined by expert judgement using formal 
elicitation methods) 

Unexpected 
Constant Values 

The values returned by a sensor do 
not change over time 

These data would be flagged and removed from 
data sets before use 

Spikes A sharp change in measured value, 
followed by a sharp change in 
opposite direction for the subsequent 
value(s). Spikes can be single values 
or occur over a short period relative to 
the monitoring period.  

These data would be flagged and removed from 
data sets before use, the value of the gap in data 
caused by removing the spike could be left as 
NaN or could be recreated by averaging adjacent 
values 

Temporary Step 
Change 

Data records show a sharp change in 
values, before a similar sharp change 
in the opposite direction, and then 
progressing at a similar rate of 
change as previously 

This type of anomaly could be caused by 
temporary malfunction of the monitoring system 
such as an increase in electrical current over a 
short period. Data might be flagged and removed 
from data sets used in analysis, or an algorithm 
might be developed to correct the affected data. 

Permanent Step 
Change 

Data records show a sharp change in 
values, before progressing at a similar 
rate of change as previously 

It may be possible to correct for permanent step 
changes, or the flagged data might be removed 
from the data sets used for analysis 

Noise Noise is characterised by a scattering 
of values around a central trend 

Noise that is not characterised by the features 
specified for other anomaly types is usually 
challenging to remove from data; therefore, noisy 
data need to be evaluated on a case-by-case 
basis and used in a manner suited to the end user 
needs 
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Category Characteristic (and example, if 
available) 

Processing Options 

Outliers The values recorded by one sensor 
are inconsistent with values recorded 
by close-by sensors measuring the 
parameter in the same way in the 
same medium 

Clearly defined outliers would be removed from 
data sets, for example if one sensor in a group 
was shown to have behaviour inconsistent with 
other close-by sensors; however, removal could 
only be undertaken based on a pre-determined 
formal process 

Unexpected 
Data Trends 

Data trend is inconsistent with model 
prediction 

Data that is inconsistent with modelling would 
have to be subject to root cause analysis to 
identify the reason for the discrepancy; this might 
involve testing of sensor performance (e.g., 
recalibration where possible) and revision to the 
modelling (e.g., consideration of the conceptual 
model implemented, and investigating the effect of 
changing parameter values); it would not be 
acceptable to remove data with unexpected data 
trends from analyses until the root cause of the 
trend was identified 

Following identification of anomalies, the data must be treated prior to use. MODATS has developed 

and made available several tools for data processing (Table 6.2). Good practice in data processing is 

for software to provide good visualisation of time series data to give the expert optimal insight in the 

data, and basic statistical analyses to indicate signal quality (e.g. daily averages and standard deviations 

to indicate signal-to-noise ratio or repeatability). 

Data processing is currently a hybrid process; one or many algorithms perform the screening and 

preliminary labelling of the measurement data, which is then confirmed, rejected or altered using expert 

judgement. Automatic checking of data is undertaken on a data-point-by-data-point basis, using a priori 

physics-based knowledge (e.g., identification of non-physical and implausible values) and statistical 

tests (e.g., standard deviation from median values to identify outliers). To make computed results 

traceable, all data processing steps should be based on a quality assurance procedure that defines how 

the process should be conducted, and recorded in a version control system. 

In addition to identification and treatment of anomalies, data processing requires amalgamation of data 

from different sensors (potentially including sensors monitoring the same parameter using different 

technologies) into integrated data sets for analysis. This includes data reduction so that modelling and 

visualisation can proceed efficiently. Temporal sampling of sensor data should be as homogeneous 

across sensors and time as possible to allow easy comparison across several sensors. The temporal 

resolution must be high enough to cover all relevant phenomena (e.g. porewater pressure can change 

more rapidly than temperature, so sampling of pressure data should be performed at a higher frequency 

than sampling of temperature data). 

Multidisciplinary domain expertise is needed. Data sets from several sensors should be processed 

together, alongside metadata, to cross-check conclusions. Applying domain knowledge of the whole 

environment and of the used sensors and data acquisition setup is also crucial to ensure correct 

processing. Expertise is applied at all stages of data management, not just at the analysis stage by the 

data users. 
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Table 6.2 – Tools developed in MODATS for data processing, including a description of how to access the tool. 

Org. Tool Description Availability 

UFZ OGS VisCoSiR OGS VisCoSiR is a tool, that supports domain 
experts in combining and analysing multiple 
spatial simulation results, i.e. from different 
simulation software or conducted with different 
parameter setups. In contrast to other tools, 
OGS VisCoSiR focuses on the visual 
comparison in 3D. It consists of two modules: 
1) A combiner, that allows to spatially and 
temporally combine (i.e., interpolate) the data 
sets and calculate metrics (like deviation), and 
2) an analyser that presents the combination 
result and allows domain experts to explore the 
differences and similarities in an interactive, 
visual way. 

The tool is available in a public git-repository: 

https://gitlab.opengeosys.org/vislab/non-unity-
apps/viscosir-cxx 

UFZ Converter for Transforming Measurement 
Data to VTK Unstructured Grids 

In order to make monitoring data available for 
visualisation, we implemented a python script, 
that accesses the FEIS database (provided by 
Nagra) and retrieves temperature 
measurements for a given list of sensors and 
dates. In this way, we provide infrastructure for 
making observation data compatible with OGS 
tools and scientific visualisation software such 
as ParaView. 

The python script is available under the license GNU 
GPLv3, and can be accessed online: 

https://zenodo.org/records/10017852 

Graebling (2023). Converter for Transforming 
Measurement Data to VTK Unstructured Grids. 
doi:10.5281/zenodo.10017851. 

https://gitlab.opengeosys.org/vislab/non-unity-apps/viscosir-cxx
https://gitlab.opengeosys.org/vislab/non-unity-apps/viscosir-cxx
https://zenodo.org/records/10017852
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Org. Tool Description Availability 

UFZ Interactive Visualizations: Digital Twin 
Prototype & Virtual Field Trip 

The visualisation applications are prototypes of 
digital replicas of the Mont Terri URL, that 
integrate heterogeneous data from several 
different sources. Both, simulation results and 
observation data are displayed within the same 
system. 

Because these prototype applications include non-
public data sets from external contributors as well as 
access to non-public external databases, they 
cannot be made publicly accessible. However, the 
visualisations are available in form of public videos 
online: 

Digital Twin Prototype: 
https://www.youtube.com/watch?v=X71DF7SG5uc 

Virtual Field Trip: 
https://www.youtube.com/watch?v=kH34J9cZ3aI 

 

PSI # Step 1: Data collection # Load the temperature data import torch 

import torch.nn as nn 

import numpy as np 

import pandas as pd 

import random 

import matplotlib.pyplot as plt  

PSI # Step 2: Preprocessing and normalization # 2.1 data prepocessing 

# define range for S_temperature and 
T_temperature 

H_range = [0.1, 100] 

T_range = [1, 180] 

PSI # Step 2: Preprocessing and normalization # 2.2 Split the data into 70% for training and 
30% for validation 

n_train = round(0.7 * T_temperature.shape[0]) 

n_val = T_temperature.shape[0] - n_train 

T_shape = T_temperature.shape 

T_shape_rounded = tuple(round(dim) for dim in 
T_shape) 

https://www.youtube.com/watch?v=X71DF7SG5uc
https://www.youtube.com/watch?v=kH34J9cZ3aI
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PSI # Step 2: Preprocessing and normalization # 2.3 data normalization  

# Normalize the data using the mean and 
standard deviation of the training set 

x_val = (x_val - mean_x_val) / std_x_val 

y_val = (y_val - mean_y_val) / std_y_val 

z_val = (z_val - mean_z_val) / std_z_val 

t_val = (t_val - mean_t_val) / std_t_val 

H_val = (H_val - mean_H_val) / std_H_val 

T_val = (T_val - mean_T_val) / std_T_val 

PSI # Step 3: Build the Recurrent Neural Network 
(RNN) model 

# Define the neural network architecture n_inputs = 4 

n_outputs = 2 

seq_length = 1  # Sequence length for RNN input 

# Define the number of neurons in each layer 

n_neurons_rnn = 20  # LSTM layer neurons 

n_neurons_fc1 = 20  # First fully connected layer 
neurons 

n_neurons_fc2 = 20  # Second fully connected layer 
neurons 

PSI # Step 4: Train the model 

 

# 4.1 Instantiate the model import torch.nn.functional as F 

model = NN() 

# Define the loss function (criterion) and optimizer 

criterion = nn.MSELoss() 

optimizer = torch.optim.Adam(model.parameters(), 
lr=0.001) 
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PSI # Step 4: Train the model # 4.2 Measure CPU and GPU usage after 
prediction 

# Measure CPU and GPU usage after prediction 

cpu_percent_after = psutil.cpu_percent() 

gpu_usage_after = get_gpu_usage() 

# Measure time after prediction 

Y_pred = model(input_val) 

training_time = time.time() - start_time 

PSI # Step 5: Evaluate the ML model on the 
validation set 

# Evaluate the model on the validation set     # Create a DataFrame with the predicted and true 
values of H and T 

results_df = pd.DataFrame({ 

    "H_pred_val": H_pred_val, 

    "H_val": H_val, 

    "T_pred_val": T_pred_val, 

    "T_val": T_val 

}) 

PSI # Step 6: Visualize the results # Plot the predicted temperature T vs the true 
temperature T for the validation set 
# Plot the predicted relative humidity H vs the 
true relative humidity H for the validation set 

import matplotlib.pyplot as plt 
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PSI # Step 7: calculate the indicators of MAE, 
MSE, r-squared 

# Unnormalize the validation data sets 
# Compute the performance metrics for 
temperature T 

# Compute the performance metrics for relative 
humidity H 

# Print the performance metrics for 
temperature T 

# Print the performance metrics for relative 
humidity H 

from sklearn.metrics import mean_absolute_error, 
mean_squared_error, r2_score 

VTT preprocessing.py 
Preprocessing and formattind data 
Method: create_raw_dataset  
 
Creates a unified raw dataset of given csv or xlsx files 
and selected columns. Informs for each data 
element from what file it was taken. Drops 
duplicates. 

 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab.  

VTT format_*.py 
Preprocessing and formattind data 
Changes source file-formats to csv, adds column 
‘timestamp’ for timestamps using unix epoch time 
format. In some cases, modifies column names to 
avoid confusion later. Data sources: aitemin, 
campbell, datataker, fuktlog, extensometer, rock. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT preprocess_*.py 
Preprocessing and formattind data 
Uses create_raw_dataset in preprocessing.py to 
create a unified source-specific dataset from the 
formatted files. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 
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VTT cleaning.py 
Cleaning 
Method: get_length_gaps 
Counts length of gaps in selected columns of data 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: resample_dataframe 
Changes the sampling rate of data to target sampling 
rate 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: clean_analysis_data 
Creates a dataframe without any gaps and 
resampled to preferred frequency. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: smooth_known_events 
Smooths out known (manmade) events from given 
data with interpolation. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: filter_resids 
Returns found trend and residuals in separate 
dataframes. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: detect_outliers 
Detects outliers of selected columns individually. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 
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VTT cleaning.py 
Cleaning 
Method: detect_outliers_group 
Detects outliers for selected columns as a group. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: identify_spikes 
Identifies the peaks in timeseries that are 
considered as spikes 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: peak_widths 
Detects start and end of identified spikes. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: remove_spikes 
Smooths the identified spikes. Uses peak_widths. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: remove_baseline 
Removes baselines from given timeseries. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT cleaning.py 
Cleaning 
Method: detect_correlation_change 
Tests whether two datasets with the same attributes 
have differences in correlation. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 
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VTT  Cleaning_pipeline.ipynb 
Jupyter notebooks 
Purpose: Cleaning pipeline 
Example on a cleaning pipeline for a preprocessed 
dataset utilizing the functionality in cleaning.py. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT  Anomaly_detection.ipynb 
Jupyter notebooks 
Purpose: Anomalies 
Example on how anomalies can be detected using 
the functionality in cleaning.py. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT  Drifting.ipynb 
Jupyter notebooks 
Purpose: Drifting 
Example on how drifting can be detected using the 
functionality in cleaning.py. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT  Spikes_detection_removal.ipynb 
Jupyter notebooks 
Purpose: Spikes 
Example on how spikes can be detected and 
removed using the functionality in cleaning.py 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT  RockData_BeforeVsAfterPOPLU_PCAMethod.ipynb 
Jupyter notebooks 
Purpose: Rock data analysis 
Example on how to compare two time periods of 
high dimensional data: reduction of dimensions, 
time evolution in reduced space, detecting change 
visually, separating dominant behaviour and noise. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 

VTT RockData_BeforeVsAfterPOPLU_StatTests.ipynb 
Jupyter notebooks 
Purpose: Rock data analysis 
Example on basic statistical visualisations and 
testing for comparing two time periods of sensor 
data. 

Currently in the access restricted VTT GitLab 
repository.  

If related WMOs allow the publication, can be 
released via e.g. GitLab. 
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6.2 Data Storage 

In MODATS, data storage was considered in most detail in the Nagra and UFZ FE experiment test 

cases. 

Data storage is the organisation of data and metadata to make it available for its intended use (see [4] 

for a discussion of the repository monitoring context). As much data as possible should be stored in a 

structured way to prevent the loss of implicit knowledge and to allow for automatization of data 

interpretation in the future. 

It is necessary and important to clearly establish the ownership and responsibility for different parts of 

the monitoring database. These include the data, the metadata, and the expertise required to use the 

data, including the understanding of how the database has been designed and constructed. Ownership 

and responsibility for these different aspects of the monitoring database might be vested in different 

roles within a WMO. 

Owing to the range of types of information that need to be included in a monitoring database (e.g.: 

objects, time series, variables, parameters, activities and metadata), it is a challenge to organise and 

structure the database in a way that facilitates easy access for data users. In particular, there is a risk 

of double storing large amounts of data in the database (for example, the co-ordinates of tunnels or the 

occurrence of events relevant to the interpretation of monitoring data), which can lead to inconsistencies 

and accessibility issues. Design of the database should be undertaken from the perspective of the data 

users rather than the data providers. 

Tools to access, compile, interpret and present monitoring data often have a high learning threshold 

making them inaccessible to many data users. This often requires additional processing/re-learning 

steps, often with help from an expert. User-friendly tools with low-learning thresholds are more likely to 

reduce costs and meet deadlines. 

Harmonised ontologies8 and metadata conventions would benefit the efficient and transparent storage 

of monitoring data. Work in MODATS has highlighted the application of outcomes from the OECD NEA 

RepMet initiative [78]; high-level guidance provided in the RepMet reports should be followed when 

planning for the storage of metadata in a repository monitoring programme. In order to facilitate the 

implementation and use of shared digital infrastructure as well as to exploit the full capacities of 

automatization, data standards and shared APIs should be agreed on. This standardisation should also 

cover metadata, which needs to be structured in a uniform and consistent way, through time and by the 

different data sources. 

When interpreting monitoring data, it is necessary to distinguish between cause and effect. It is then 

paramount that the external influences (natural and anthropogenic) relative the monitored system are 

identified. During the operational phase of the repository there will be many activities on-going 

simultaneously that might generate response in the monitoring system. It is therefore necessary to have 

a system in place that will document all activities in support of data interpretation and root-cause analysis 

that might be warranted. This functionality, of booking and tracing activities/events, is part of the 

monitoring database.  

WMO-owned data are strictly controlled. This includes limits on the use of cloud environments for data 

storage, and the physical locations of servers. This results in conflicts between confidentially and 

information security on the one hand, and a desire for openness on the other hand. Furthermore, it 

affects company procedures, information sharing/exchange and standards. 

In MODATS, an API has been developed to allow access to data related to the FE experiment and 

stored in the FEIS (Section 3.2.1), and a visual tool has been developed for the comparative exploration 

 

8 An ontology is the classification and explanation of entities such as (in this context) the information in a database. 
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and analysis of simulation data was developed for use alongside OGS (Section 3.4.4, see further 

discussion in Section 6.3). 

Monitoring data and metadata need to be available for decades to support repository operation and 

closure. As a consequence, there needs to be a plan for regular updates to hardware and software, as 

it is likely that databases and data management tools will change over the lifetime of repository 

monitoring programmes. To date, the main tools for data processing and analysis of URL experiments 

have been spreadsheet applications, and significant manual work has been necessary for data 

processing. In the future, approaches are likely to include ML and AI, as demonstrated by the test cases 

reported herein. Flexibility is required in the manner in which data is stored to allow for different ways of 

processing and analysing data in the future. There is a need for databases to be capable of handling 

different time systems, to adjust for daylight saving time, and to accommodate different spatial 

coordinate systems. Work in MODATS has demonstrated how standardised file formats such as VTK 

can be used to support sharing of information and, in this way, improve robustness against future 

software developments. The use of a common and widely used data format, such as VTK, improves the 

robustness compared to establishing a new and specialised file format used only in the domain, because 

established formats are founded on the technical support of a large number of users and are less likely 

to be replaced by new formats. 

When observation data is displayed in visualisation tools, data cleaning methods must also be 

communicated transparently to end users. The creation of a shared library for such methods (including 

comprehensible descriptions on different knowledge levels) could reduce redundancy and create 

benefits. 

Although monitoring data is often described as vast, it is not large with respect to other data science 

applications. Therefore, the size of the data sets should not be a problem for repository monitoring. For 

example, the input data for modelling of the PSI FE test case was a data file of 1.9 GB, which provided 

temperature and relative humidity data for a period of ~5 years. Extension of the monitoring period to 

~50-100 years would similarly not result in an excessively large data set. However, although the data 

file is not large, the information contained within it is multi-faceted, and requires efficient and effective 

algorithms to model and visualise it. Investigation of the use of data for purposes such as forecasting 

and education, was considered in data use test cases, which are discussed in the next two sections. 

6.3 Modelling and Visualisation 

In MODATS, data use was considered in most detail in the Andra, Amvalor and ENSAM ALC1605 test 

case, the PSI FE experiment test case, and UFZ FE experiment test case. 

Experience and expertise have been developed in coupled numerical modelling of THMC processes 

over the last four decades of RD&D in geological disposal. For example, work in the EURAD Mechanistic 

Understanding of Gas Transport in Clayey Materials (GAS) and Influence of Temperature on Clay-

Based Material Behaviour (HITEC) WPs of EURAD used a combination of experimental and modelling 

approaches to increase the understanding and predictability of the impact of coupled gas and heat 

transport on clay barriers [93]. 

However, repository monitoring during operations introduces new requirements on modelling, most 

notably: 

• The requirement for more rapid modelling based on monitoring data acquired continuously 

through the operating period. 

• The requirement to communicate the results effectively and efficiently, in order to strengthen 

understanding and support decision making. 

In addition, the emerging application of data science approaches allows for enhanced use of monitoring 

results by using the data acquired directly in the modelling approach. 
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In MODATS, the application of data science approaches to modelling of monitoring data has been 

investigated in the ALC1605 test case and the FE test case. 

In the ALC1605 test case, it has been demonstrated that hybrid twin models are a promising approach 

for modelling the thermal evolution of a HLW disposal cell. In the hybrid twin approach, a physics-based 

(surrogate) model using only heat conduction is first applied to the model domain. Monitoring data are 

then used to quantify the uncertainty in the model (the ignorance), which, when applied to the surrogate 

model, provides the ability to rapidly and accurately model the data from the ALC1605 test case. The 

use of a hybrid twin, rather than a purely data-driven model has several advantages, particularly in 

modelling of the thermal evolution of the disposal system over the operational period, as it grounds 

predictions in well-established physics, enhancing the reliability of our results. 

The PSI FE experiment test case came to a similar conclusion as the ALC1605 test case, i.e. that a 

hybrid modelling approach combining the physical model with a data-driven model provided the best 

modelling results. In the PSI test case, the preferred model was the PIML, which combines the kNN 

algorithm with data on the heat power or power density heat source. 

In addition to using data in advanced modelling applications, data (and the models generated from the 

data) can be used to communicate the outcomes from repository monitoring. The UFZ test case 

demonstrated the power of visualisation tools to develop understanding by integrating geological, 

infrastructure, monitoring and simulation data. The VEIS system automatically updates the when 

underlying data change, and can therefore be considered a digital twin prototype with a focus on 

visualisation. 

The application of the VEIS was extended for use by university students. To extend the use of 

visualisation systems for these actors, additional features are required to facilitate independent 

exploration of the information. These include contextual information and tasks to be performed at each 

viewpoint. The inclusion of tasks is particularly important, as undertaking these tasks provides the user 

with a more interactive experience, increasing their learning from the process. Evaluation of the use of 

the VEIS in this way in a trial demonstrated the effectiveness of the approach in communication and 

education. 

The work of UFZ also demonstrated that visualisation can be of significant benefit when comparing 

simulation results from different numerical models of THMC processes. The approach adopted involved 

a two-step process. The first step is combining the data into a common file format, which allows spatial 

and temporal differences in the data to be reconciled. The second step is to view the data and allow for 

contouring, slicing, selecting and filtering (based on conditions) of timesteps. 

6.4 Digital Twins: Use in Monitoring during Repository Operation 

 Context to Repository Digital Twins: The Characteristics of Repository Systems 

Repository systems are multi-faceted. At a high level they can be considered as a combination of the 

active system that delivers the construction, operation and closure of the facility in a safe, secure, 

sustainable and publicly acceptable manner; and the passive system that delivers protection of people 

and the environment in the long-term. 

These systems contain elements with widely differing functions, structures and processes. Some 

examples are as follows: 

• The geosphere is comprised of rock, discontinuities (e.g., faults and fractures), fluids (e.g., 

groundwater and porewater) and gases. The function of the geosphere is dependent on the 

disposal concept but can include isolation of the waste, containment of the waste, and protection 

of the EBS. 

• The EBS is comprised of cementitious materials, clay materials (e.g., pre-compacted bentonite 

blocks and bentonite pellets), waste containers and wasteforms. As with the geosphere, the 
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functions of the EBS are dependent on the disposal concept but can include containment and 

attenuation of releases. 

• The excavated repository will contain significant infrastructure such as ground support systems 

(e.g., shotcrete), ventilation systems, materials handling systems, monitoring sensors and 

boreholes that support the emplacement of waste and closure of the repository. 

• The open repository system will also be host to dynamic underground processes such as the 

movement of people and materials (including the waste and EBS), air flows and seepage of 

water and gases into and out from the tunnels. 

All of these systems operate on different temporal and spatial scales, and contain different materials 

that are affected by different types of processes. Some of the systems can be characterised and 

understood in detail.  For example, the materials and function of the ventilation system. Other systems 

are characterised by irreducible uncertainty. For example, there is no technology in existence now or in 

the foreseeable future that can map the intersections, tortuosity and mineral coatings of fractures in a 

deterministic sense. Similarly, the understanding of the microstructure of clay host rocks will always be 

subject to uncertainty, for example in the distribution of pore space and the mineral content of specific 

locations. The EBS is also subject to uncertainty such as the water content distribution and packing 

density of emplaced bentonite pellets, the orientation of waste products in intermediate-level waste 

packages, and the diffusion of radionuclides within spent fuel pellets and the resulting impact on 

instantaneous release fractions. 

Uncertainty in geological disposal programmes has been recognised for decades and is addressed 

within the safety case through a variety of means. This uncertainty will have an impact on the extent to 

which digital twins can be applied in repository programmes. 

 Digital Twins and Monitoring in Support of Post-Closure Safety 

Digital twins have the potential to support monitoring programmes in demonstration of compliance with 

requirements and conditions linked to post-closure safety. These requirements and conditions differ 

between each repository programme are yet to be fully developed in some cases. However, monitoring 

during repository operation is not expected to be based on extensive sensor networks as currently 

employed in URL experiments. The extensive networks used in URL experiments are deployed to 

develop understanding of coupled processes occurring in the EBS and geosphere, and this 

understanding is fed into the safety case. Monitoring during repository operation is anticipated to be 

more focused on support of limited modelling used to check system behaviour (for example to confirm 

the absence of any conditions that could affect the safety of the facility after closure), and has to be 

implemented such that it does not impact passive safety. Hence, approaches to developing digital twins 

for monitoring repository processes during the operational period will most likely have to be developed 

with much sparser data sets than digital twins of URL experiments. Likewise, measured gradients might 

be smaller since sensors will generally be placed at a significant distance from the waste packages. 

Digital twins can support monitoring by developing surrogate models that are able to recreate spatially-

distributed time series data without the need for resource-expensive and time-consuming coupled 

process modelling. An example would be the development of a 3D model of the temperature field over 

time, without the need for modelling of hydraulic and mechanical interactions. 

To achieve this aim, surrogate models require a PBM that incorporates the processes of greatest 

significance to the objective of the model, and the use of a DDM that incorporates ML approaches such 

as neural networks to train the model to deliver accurate results. 

 MODATS Definition of Digital Twins 

As noted in the introduction (Section 1.3.3), a key feature of a digital twin is automatic feedback of 

monitoring information to better meet the objectives. It is the feedback from monitoring information that 

distinguishes digital twins from other types of models (e.g., geological interpretations, building 

information modelling representations of infrastructure, and coupled process models). 



EURAD Deliverable 17.6 – Advancements in Monitoring Data Management, Modelling and Visualisation 

EURAD - Monitoring Equipment and Data Treatment for Safe Repository Operation and Staged 
Closure, Deliverable 17.6 
Dissemination level: Public 
Date of issue of this report: 07/05/2024  Page 113  

Furthermore, as justified above, digital twins are built with a specific objective in mind and cannot 

replicate the full reality of the repository. Therefore, it is the opinion of MODATS that repository digital 

twins are not “one size fits all”, but come in different forms depending on the objective for which they 

are developed. Several digital twins might be created for one repository, each with a different purpose, 

but, potentially, all with a common data architecture to enhance interoperability. 

MODATS has developed the following definition of a repository digital twin: 

A repository digital twin is a virtual model of part of a repository that is updated automatically to 

address specific objectives. 

6.5 Generic Workflow for Conformance Verification 

The preceding sections have provided a discussion of each step involved in data management (including 

processing and storage), modelling and visualisation. This sub-section presents a good practice 

workflow for the evaluation of monitoring data. This includes the verification of the monitoring system, 

uncertainties in the as-built-state of the monitoring system, as well as an assessment of potential 

influences and processes that were discarded during the setup of numerical models. Here we propose 

a general workflow that should guide the development of processes from the start of monitoring through 

quality control of monitoring data through to decision-making. 

The workflow presented here builds on the test cases presented in this report, especially FE Experiment 

Test Case 1 (Section 3.2), the POPLU and Prototype Repository Experiments Test Case (Section 4) 

and the PRACLAY Experiment Test Case (Section 5). In addition, practical experience in monitoring 

URL experiments has been taken into account (see, for example, [94]).  

The workflow is based on five principal steps, that will be discussed in this chapter: 

1. Data acquisition 

2. Data screening 

3. Anomaly interpretation 

4. Comprehensive data analytics 

5. Decision support 
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Figure 6.1 - Proposed workflow for data handling from acquisition to decision support. 

 

 Data Acquisition 

Data acquisition needs to be conducted adhering to quality control standards and good practice. 

Important insights on monitoring good practice have been assembled in a survey of lessons learned 

from conducting URL experiments performed within MODATS [94]. Guidance on quality assurance can 

be found in [95]. 

Data needs to be stored in a database, that gets the most recent data in regular intervals or through live 

streams. Intervals of no greater than one day are suggested but shorter intervals will be generally 

preferable. The database needs to store the unprocessed signal data that are measured by the sensor 

(e.g. in units of millivolts) as far as reasonable, as well as converted data based on the sensor calibration 

certificate. Depending on sensor type and manufacturer it could be that the unprocessed signal data is 

not available, i.e. the output is already a product of a calibration performed in the laboratory. In both 

cases a complete definition of the sensor response characteristics including the calibration certificates 

needs to be stored as part of the metadata. 

A complete set of metadata that describes the installed sensor network and any changes made to it 

during the monitoring period need to be maintained throughout and stored alongside the raw data. It is 

also important to store pertinent information on the overall system (e.g. repository operations affecting 

the monitored data) in a logbook for later reference. This logbook information is considered to be raw 

(meta) data and thus should be created and maintained close to real-time for consistency. 
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Raw data should be kept for at least the duration of the monitoring programme and not modified in any 

kind of way. 

 Data screening 

Based on the raw data, a (periodical) basic data screening should occur. The goals of the data screening 

are to evaluate the general quality of the raw data. Specifically, anomalies such as sensor failure, 

outliers, or gaps and discontinuities in the data should be labelled. Because the type of anomalies to be 

identified in this step is fairly easy to identify, often an automated process may be suitable for this type 

of screening. In addition, expert evaluation could be employed to verify the automated processes or add 

additional labels. 

The product of the data screening step is a set of labelled data that identifies anomalies in the monitoring 

data that are not associated with the system monitored but are spurious errors of the monitoring system. 

The premise of adding labels to the data is to identify sections of the data that are deemed reliably and 

to identify sections of the data for which confidence is reduced and which shall be excluded from further 

interpretation. Importantly, the process of labelling does not alter the data in any way and all data is 

maintained throughout the monitoring programme.   

 Anomaly interpretation 

Further analysis steps are more involved to identify further anomalies that may not be as obvious as the 

ones identified in the data screening step. Again, the goal is to provide additional labels that help to 

classify the data and lay the foundation for further quantitative analysis. While the data screening step 

involved identification of easily recognisable issues with the data, now the goal is to verify the data more 

in-depth and identify potential issues with the data that are less obvious, that could still impact system 

understanding. While the potential for automated processing to aid in such tasks is great, currently this 

kind of labelling requires expert intervention. 

Examples of issues that should be identified are issues with sensors such as drift, calibration issues or 

other unexpected behaviour. Effects related to the data acquisition system may be identified, and 

labelled accordingly, already in the previous step or may be detected through more in-depth analysis in 

this step. 

Further, labels related to events from the logbook such as specific interventions that will impact the 

system behaviour, should be created. Applying a well-specified format for the metadata facilitates the 

implementation of automated processes that aid in the labelling of such events in the data. 

 Comprehensive data analytics 

The labels created in the previous steps provides a quality-controlled data set (“extended labelled data”) 

for which confidence is created to conduct further analysis steps and ultimately lead into decision 

support. In addition to the monitoring data, modelled data sets need to be used in order to evaluate the 

monitoring data. Labelled data can then be treated properly, depending on the specific requirements of 

the analysis. While some methods are robust to outliers, others may not be. If labelled data points were 

to be removed for specific analyses, it needs to be decided whether to fill the gap or leave as a blank 

value. Again, not all analysis techniques are behaving the same way and a sensible filling of data gaps 

might be necessary. 

Modelled data should provide the baseline of our understanding of the monitored system. Hence, a 

meaningful comparison of those with the monitored data would lead to an understanding whether the 

system behaviour is in conformance with predictions. In order to get to a meaningful comparison, it is 

important to understand the quality of the data and the limitations of the numerical models. The first 

three steps described above ensure that the data has been adequately quality controlled. 

Numerical models are always an approximation of the real system. Differences may be due to 

approximations in the input data such as simplified time histories of modelled loads, discretization of the 
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spatial domain and of the distribution of material parameters. Further, there may also be (coupled) 

processes that are not captured by the numerical model. Hence, there will always be some level of 

disagreement between the results of numerical modelling and monitoring data. This disagreement can 

also be used to create additional labels and potentially identify (or confirm) faulty sensors through 

physical reasoning. Comparisons of modelled and measured data thus need to consider possible 

sources of differences before determining conformance.  

Advanced analysis may include computational methods such as inversions. They have their own 

sources of uncertainty and may include biases from the analyst. For example, the specific choice of 

parameters, e.g. damping parameters, used to control the convergence of a solver will lead to different 

results and probability distributions of the target solution. Typically, inversions deal with non-uniqueness 

problems, which means that there are several configurations in the solution space that equally fit the 

observation. 

 Decision support 

The ultimate goal of monitoring efforts is to aid in decision-making. To that end, suitable, curated data 

sets and models are to be created. There are different decisions that will need to be made, by different 

stakeholders during the repository lifecycle. This will range from decisions associated with the way in 

which disposal is implemented, including modifications to initial plans, to major decisions to progress 

from one stage of the programme to the next. A range of stakeholders will be involved in, or interested 

in, these decisions, and will require different information to address the questions that they have. It is 

important to tailor the presentation of materials with the target audience or specific stakeholders in mind. 

However, it is stressed here that decisions will be informed by the safety case, and the monitoring 

programme can be considered as a component of the safety case. In this instance, monitoring data will 

feed into decision making through the safety case, rather than directly. 
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7. Conclusions and Further Work 

Author: Matt White (Galson Sciences) 

7.1 Conclusions 

The conclusions from the work are summarised below. 

Data Processing 

• The work in MODATS has allowed the identification and categorisation of monitoring data 

anomalies, description of the characteristics that define each type of anomaly, and identification 

of options for their processing. 

• MODATS has developed a range of tools for undertaking monitoring data processing and these 

have been made available online. 

• Data processing should be undertaken with reference to user requirements; processing does 

not have just one end goal; data sets after processing will differ according to the user requesting 

the data. 

• Currently, data processing requires expert user checking of outcomes. 

• Data processing should not remove data from the database but flag data so that it can be 

identified and used as appropriate. 

Data Storage 

• Monitoring data should be stored with the user in mind, rather than being stored from the 

perspective of data acquisition. 

• Repository monitoring will be undertaken over long periods, so flexibility is required in monitoring 

databases, and regular upgrades to software and hardware should be planned. 

Modelling and Visualisation 

• The work in MODATS has demonstrated the potential for hybrid models that combine physics-

based and data-driven-modelling to provide a basis for analysis of monitoring data during 

repository operation. 

• The work in MODATS has also demonstrated benefits of communication through visualisation, 

including benefits to expert users and to university students. Communication to non-expert 

actors using virtual tours should include provision of contextual information, task-based activities 

and independent control of the tour to maximise learning. 

Digital Twins 

• A repository digital twin is a virtual model of part of a repository that is updated automatically to 

address specific objectives. 

• A digital twin of a repository cannot replicate the full reality of the underground (i.e. including all 

processes relevant to post-closure safety), as the repository system is subject to irreducible 

uncertainty. Instead, digital twins should focus on specific aspects of a repository (for example 

a twin of the underground infrastructure) defined by the objectives of the digital twin project. 

• Repository digital twins are not “one size fits all”, but come in different forms depending on the 

objective for which they are developed. 

• In MODATS, algorithms have been developed for surrogate models and for implementing 

physics-informed machine learning, representing prototypes of repository digital twins. 

• Future digital twins might help in global parameter sensitivity analysis and related parameter 

uncertainty quantification, and the digital twins produced in MODATS have provided an 

illustration of how such digital twins might be developed. 

• A comprehensive review of the potential applications of digital twins in repository programmes 

is required to identify the ways in which digital twins can practically enhance repository 

programmes. 
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• Further use of the MODATS Reference Experiments, including development of their digital twins 

and their underlying surrogate models is required to establish the manner in which digital twins 

can be applied during repository monitoring. 

7.2 Further Work 

MODATS has provided significant advancements in the understanding of how monitoring data can be 

managed, modelled and visualised. The advancements in MODATS are particularly relevant to 

monitoring of the near-field during repository operations, but the lessons can be applied more widely 

(i.e., monitoring during all phases of the repository lifecycle, and all data management and modelling 

work). Nonetheless, further development of approaches to data management and modelling are 

warranted, especially in the emerging field of the use of digital twins in repository monitoring. Possible 

further work is described below, with the discussion separated into: 

• Application Theme: research into the use of digital twins in repository programmes to identify 

the benefits that could be delivered through their development and application. 

• Technology Theme: further development of the capabilities of digital twins, especially the 

prototype digital twins developed in MODATS. 

Possible work in these two themes is discussed below. 

 Application Theme 

The application theme could include further consideration and a review of the potential applications of 

digital twins in repository programmes. This would provide a reference document for understanding how 

different types of digital twins could be developed and applied across the broad spectrum of activities 

required to support geological disposal of radioactive waste.  It would also support a more evolved and 

more harmonised understanding of the digital twin concept. 

This review could be coupled with specific research into the application of digital twins associated with 

monitoring programmes. The outcome would be to understand the needs of digital twins linked to 

repository monitoring programmes, e.g., exploring how much data is required by the digital twin, would 

the associated data requirements impact on the passive safety of a repository, and how would 

information supplied by digital twins support periodic updates to the safety case during operations (i.e., 

address uncertainties in the safety case recognised during the licence application)? 

As digital twins are still an emerging technology, there is a lack of clear understanding about the value 

they can bring to the geological disposal field. There is a lack of case studies of successful practices. 

Extension of the MODATS Reference Experiments and development of digital twins and their underlying 

surrogate models could be used to communicate the manner in which digital twins can be applied during 

repository monitoring, and to identify the benefits and challenges of doing so. 

There is also a need to communicate the potential for digital twins to different stakeholders. This would 

include developing guidance/understanding on the challenges and difficulties associated with using 

digital twins for discussions with civil society (for example, explaining the complex science associated 

with PBMs and surrogate models, and the different modelling approaches undertaken in safety 

assessment calculations used to support safety case arguments). 

 Technology Theme 

Current digital twin development is looking at sub-systems of the repository, whereas the ultimate 

ambition of digital twins could be to develop representations of the entire underground system (even if 

such digital twins would not be able to include all processes occurring underground). This would require 

research into the aggregation of digital twins into a single entity (so-called meta digital twin), or in other 

words, a digital twin made up of other digital twins that represent various aspects of the system. For 

example, current work in MODATS is looking at digital twins of single drifts or deposition modules; 
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research is required to consider how to integrate hundreds of these individual models into a meta digital 

twin. 

The digital twin concept has the opportunity to change how we view system design, manufacturing and 

operation, and to augment systems engineering approaches. In a repository context, digital twins have 

the potential to inform optimisation processes and support changes to design during the operational 

period. This would require code and algorithm development for computational efficiency leading to the 

deployment of Exascale Computing9 (See [96] for a discussion of the term ExaScale Computing). 

To apply digital twins in support of monitoring programmes requires further developments in the 

integration of DDMs and PBMs.  The digital twin has to be calibrated, and an “ignorance” model will be 

crucial to assess the root cause of the divergence of data from values anticipated by the early versions 

of the PBMs and DDMs. 

Deployment of digital twins also requires the development of data standards to improve the feasibility to 

develop more comprehensive systems, and the improvement of numerical models for computational 

efficiency. Example of the avenues through which computational efficiency of numerical models might 

be improved include improving parallelisation schemes and using novel hardware developments, 

especially to manage multiphysics couplings on increasingly integrated systems. 

 

  

 

9 Exascale computing refers to the use of technologies to accelerate computing by 1,000X. 
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